openal-soft/alc/effects/pshifter.cpp
2020-04-08 07:28:07 -07:00

336 lines
12 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#ifdef HAVE_SSE_INTRINSICS
#include <emmintrin.h>
#endif
#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>
#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcomplex.h"
#include "alcontext.h"
#include "alnumeric.h"
#include "alu.h"
namespace {
using complex_d = std::complex<double>;
#define STFT_SIZE 1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP (1<<2)
#define STFT_STEP (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
/* Define a Hann window, used to filter the STFT input and output. */
std::array<double,STFT_SIZE> InitHannWindow()
{
std::array<double,STFT_SIZE> ret;
/* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */
for(size_t i{0};i < STFT_SIZE>>1;i++)
{
constexpr double scale{al::MathDefs<double>::Pi() / double{STFT_SIZE-1}};
const double val{std::sin(static_cast<double>(i) * scale)};
ret[i] = ret[STFT_SIZE-1-i] = val * val;
}
return ret;
}
alignas(16) const std::array<double,STFT_SIZE> HannWindow = InitHannWindow();
struct FrequencyBin {
double Amplitude;
double Frequency;
};
struct PshifterState final : public EffectState {
/* Effect parameters */
size_t mCount;
ALuint mPitchShiftI;
double mPitchShift;
double mFreqPerBin;
/* Effects buffers */
std::array<double,STFT_SIZE> mFIFO;
std::array<double,STFT_HALF_SIZE+1> mLastPhase;
std::array<double,STFT_HALF_SIZE+1> mSumPhase;
std::array<double,STFT_SIZE> mOutputAccum;
std::array<complex_d,STFT_SIZE> mFftBuffer;
std::array<FrequencyBin,STFT_HALF_SIZE+1> mAnalysisBuffer;
std::array<FrequencyBin,STFT_HALF_SIZE+1> mSynthesisBuffer;
alignas(16) FloatBufferLine mBufferOut;
/* Effect gains for each output channel */
float mCurrentGains[MAX_OUTPUT_CHANNELS];
float mTargetGains[MAX_OUTPUT_CHANNELS];
bool deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(PshifterState)
};
bool PshifterState::deviceUpdate(const ALCdevice *device)
{
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
mPitchShiftI = FRACTIONONE;
mPitchShift = 1.0;
mFreqPerBin = device->Frequency / double{STFT_SIZE};
std::fill(mFIFO.begin(), mFIFO.end(), 0.0);
std::fill(mLastPhase.begin(), mLastPhase.end(), 0.0);
std::fill(mSumPhase.begin(), mSumPhase.end(), 0.0);
std::fill(mOutputAccum.begin(), mOutputAccum.end(), 0.0);
std::fill(mFftBuffer.begin(), mFftBuffer.end(), complex_d{});
std::fill(mAnalysisBuffer.begin(), mAnalysisBuffer.end(), FrequencyBin{});
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
return true;
}
void PshifterState::update(const ALCcontext*, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const int tune{props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune};
const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
mPitchShiftI = fastf2u(pitch*FRACTIONONE);
mPitchShift = mPitchShiftI * double{1.0/FRACTIONONE};
float coeffs[MAX_AMBI_CHANNELS];
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
mOutTarget = target.Main->Buffer;
ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
}
void PshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
/* Pitch shifter engine based on the work of Stephan Bernsee.
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
static constexpr double expected{al::MathDefs<double>::Tau() / OVERSAMP};
const double freq_per_bin{mFreqPerBin};
for(size_t base{0u};base < samplesToDo;)
{
const size_t todo{minz(STFT_SIZE-mCount, samplesToDo-base)};
/* Retrieve the output samples from the FIFO and fill in the new input
* samples.
*/
auto fifo_iter = mFIFO.begin() + mCount;
std::transform(fifo_iter, fifo_iter+todo, mBufferOut.begin()+base,
[](double d) noexcept -> float { return static_cast<float>(d); });
std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
mCount += todo;
base += todo;
/* Check whether FIFO buffer is filled with new samples. */
if(mCount < STFT_SIZE) break;
mCount = FIFO_LATENCY;
/* Time-domain signal windowing, store in FftBuffer, and apply a
* forward FFT to get the frequency-domain signal.
*/
for(size_t k{0u};k < STFT_SIZE;k++)
mFftBuffer[k] = mFIFO[k] * HannWindow[k];
complex_fft(mFftBuffer, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
const double amplitude{std::abs(mFftBuffer[k])};
const double phase{std::arg(mFftBuffer[k])};
/* Compute phase difference and subtract expected phase difference */
double tmp{(phase - mLastPhase[k]) - static_cast<double>(k)*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2));
/* Get deviation from bin frequency from the +/- Pi interval */
tmp /= expected;
/* Compute the k-th partials' true frequency, twice the amplitude
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
mAnalysisBuffer[k].Amplitude = 2.0 * amplitude;
mAnalysisBuffer[k].Frequency = (static_cast<double>(k) + tmp) * freq_per_bin;
/* Store the actual phase[k] for the next frame. */
mLastPhase[k] = phase;
}
/* Shift the frequency bins according to the pitch adjustment,
* accumulating the amplitudes of overlapping frequency bins.
*/
std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
size_t j{(k*mPitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
mSynthesisBuffer[j].Amplitude += mAnalysisBuffer[k].Amplitude;
mSynthesisBuffer[j].Frequency = mAnalysisBuffer[k].Frequency * mPitchShift;
}
/* Reconstruct the frequency-domain signal from the adjusted frequency
* bins.
*/
for(size_t k{0u};k < STFT_HALF_SIZE+1;k++)
{
/* Compute bin deviation from scaled freq */
const double tmp{mSynthesisBuffer[k].Frequency / freq_per_bin};
/* Calculate actual delta phase and accumulate it to get bin phase */
mSumPhase[k] += tmp * expected;
mFftBuffer[k] = std::polar(mSynthesisBuffer[k].Amplitude, mSumPhase[k]);
}
/* Clear negative frequencies to recontruct the time-domain signal. */
std::fill(mFftBuffer.begin()+STFT_HALF_SIZE+1, mFftBuffer.end(), complex_d{});
/* Apply an inverse FFT to get the time-domain siganl, and accumulate
* for the output with windowing.
*/
complex_fft(mFftBuffer, 1.0);
for(size_t k{0u};k < STFT_SIZE;k++)
mOutputAccum[k] += HannWindow[k]*mFftBuffer[k].real() * (2.0/STFT_HALF_SIZE/OVERSAMP);
/* Shift FIFO and accumulator. */
fifo_iter = std::copy(mFIFO.begin()+STFT_STEP, mFIFO.end(), mFIFO.begin());
std::copy_n(mOutputAccum.begin(), STFT_STEP, fifo_iter);
auto accum_iter = std::copy(mOutputAccum.begin()+STFT_STEP, mOutputAccum.end(),
mOutputAccum.begin());
std::fill(accum_iter, mOutputAccum.end(), 0.0);
}
/* Now, mix the processed sound data to the output. */
MixSamples({mBufferOut.data(), samplesToDo}, samplesOut, mCurrentGains, mTargetGains,
maxz(samplesToDo, 512), 0);
}
void Pshifter_setParamf(EffectProps*, ALCcontext *context, ALenum param, float)
{ context->setError(AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
void Pshifter_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const float*)
{ context->setError(AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param); }
void Pshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, int val)
{
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
props->Pshifter.CoarseTune = val;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
props->Pshifter.FineTune = val;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x",
param);
}
}
void Pshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const int *vals)
{ Pshifter_setParami(props, context, param, vals[0]); }
void Pshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, int *val)
{
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
*val = props->Pshifter.CoarseTune;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
*val = props->Pshifter.FineTune;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x",
param);
}
}
void Pshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, int *vals)
{ Pshifter_getParami(props, context, param, vals); }
void Pshifter_getParamf(const EffectProps*, ALCcontext *context, ALenum param, float*)
{ context->setError(AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
void Pshifter_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, float*)
{ context->setError(AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); }
DEFINE_ALEFFECT_VTABLE(Pshifter);
struct PshifterStateFactory final : public EffectStateFactory {
EffectState *create() override;
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; }
};
EffectState *PshifterStateFactory::create()
{ return new PshifterState{}; }
EffectProps PshifterStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE;
props.Pshifter.FineTune = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE;
return props;
}
} // namespace
EffectStateFactory *PshifterStateFactory_getFactory()
{
static PshifterStateFactory PshifterFactory{};
return &PshifterFactory;
}