c833af9ecd
This puts the base coefficients and the phase deltas next to each other. This improves caching, as the base and phase deltas are always used together while the scales are only used for the non-fast versions.
227 lines
8.0 KiB
C++
227 lines
8.0 KiB
C++
#include "config.h"
|
|
|
|
#include <cassert>
|
|
|
|
#include <limits>
|
|
|
|
#include "alcmain.h"
|
|
#include "alu.h"
|
|
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
|
|
namespace {
|
|
|
|
inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALuint)
|
|
{ return vals[0]; }
|
|
inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALuint frac)
|
|
{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
|
|
inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALuint frac)
|
|
{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
|
|
inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALuint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const ALfloat pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
const ALfloat *fil{istate.bsinc.filter + m*pi*4};
|
|
const ALfloat *phd{fil + m};
|
|
const ALfloat *scd{phd + m};
|
|
const ALfloat *spd{scd + m};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
ALfloat r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
|
|
return r;
|
|
}
|
|
inline ALfloat do_fastbsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALuint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const ALfloat pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
const ALfloat *fil{istate.bsinc.filter + m*pi*4};
|
|
const ALfloat *phd{fil + m};
|
|
|
|
// Apply the phase interpolated filter.
|
|
ALfloat r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
|
|
return r;
|
|
}
|
|
|
|
using SamplerT = ALfloat(const InterpState&, const ALfloat*RESTRICT, const ALuint);
|
|
template<SamplerT &Sampler>
|
|
const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{
|
|
const InterpState istate{*state};
|
|
auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat
|
|
{
|
|
const ALfloat ret{Sampler(istate, src, frac)};
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
|
|
return ret;
|
|
};
|
|
std::generate(dst.begin(), dst.end(), proc_sample);
|
|
|
|
return dst.begin();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALuint,
|
|
ALuint, const al::span<float> dst)
|
|
{
|
|
#if defined(HAVE_SSE) || defined(HAVE_NEON)
|
|
/* Avoid copying the source data if it's aligned like the destination. */
|
|
if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
|
|
return src;
|
|
#endif
|
|
std::copy_n(src, dst.size(), dst.begin());
|
|
return dst.begin();
|
|
}
|
|
|
|
template<>
|
|
const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_point>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_lerp>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<FastBSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
|
|
static inline void ApplyCoeffs(size_t /*Offset*/, float2 *RESTRICT Values, const ALuint IrSize,
|
|
const HrirArray &Coeffs, const ALfloat left, const ALfloat right)
|
|
{
|
|
ASSUME(IrSize >= 4);
|
|
for(ALuint c{0};c < IrSize;++c)
|
|
{
|
|
Values[c][0] += Coeffs[c][0] * left;
|
|
Values[c][1] += Coeffs[c][1] * right;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void MixHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
|
|
MixHrtfFilter *hrtfparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
|
|
hrtfparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixHrtfBlend_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const ALfloat *InSamples, float2 *AccumSamples, const size_t OutPos, const ALuint IrSize,
|
|
const HrtfFilter *oldparams, MixHrtfFilter *newparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, OutPos, IrSize,
|
|
oldparams, newparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
|
|
const size_t BufferSize)
|
|
{
|
|
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize);
|
|
}
|
|
|
|
|
|
template<>
|
|
void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
|
|
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
|
|
{
|
|
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
|
|
const bool reached_target{InSamples.size() >= Counter};
|
|
const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
|
|
for(FloatBufferLine &output : OutBuffer)
|
|
{
|
|
ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
|
|
ALfloat gain{*CurrentGains};
|
|
const ALfloat diff{*TargetGains - gain};
|
|
|
|
auto in_iter = InSamples.begin();
|
|
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
|
|
{
|
|
const ALfloat step{diff * delta};
|
|
ALfloat step_count{0.0f};
|
|
while(in_iter != min_end)
|
|
{
|
|
*(dst++) += *(in_iter++) * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(reached_target)
|
|
gain = *TargetGains;
|
|
else
|
|
gain += step*step_count;
|
|
*CurrentGains = gain;
|
|
}
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
while(in_iter != InSamples.end())
|
|
*(dst++) += *(in_iter++) * gain;
|
|
}
|
|
}
|
|
|
|
/* Basically the inverse of the above. Rather than one input going to multiple
|
|
* outputs (each with its own gain), it's multiple inputs (each with its own
|
|
* gain) going to one output. This applies one row (vs one column) of a matrix
|
|
* transform. And as the matrices are more or less static once set up, no
|
|
* stepping is necessary.
|
|
*/
|
|
template<>
|
|
void MixRow_<CTag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
|
|
const float *InSamples, const size_t InStride)
|
|
{
|
|
for(const float gain : Gains)
|
|
{
|
|
const float *RESTRICT input{InSamples};
|
|
InSamples += InStride;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
auto do_mix = [gain](const float cur, const float src) noexcept -> float
|
|
{ return cur + src*gain; };
|
|
std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), do_mix);
|
|
}
|
|
}
|