817 lines
25 KiB
C
817 lines
25 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2011 by Chris Robinson
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alSource.h"
|
|
#include "alu.h"
|
|
#include "hrtf.h"
|
|
|
|
|
|
/* Current data set limits defined by the makehrtf utility. */
|
|
#define MIN_IR_SIZE (8)
|
|
#define MAX_IR_SIZE (128)
|
|
#define MOD_IR_SIZE (8)
|
|
|
|
#define MIN_EV_COUNT (5)
|
|
#define MAX_EV_COUNT (128)
|
|
|
|
#define MIN_AZ_COUNT (1)
|
|
#define MAX_AZ_COUNT (128)
|
|
|
|
struct Hrtf {
|
|
ALuint sampleRate;
|
|
ALuint irSize;
|
|
ALubyte evCount;
|
|
|
|
const ALubyte *azCount;
|
|
const ALushort *evOffset;
|
|
const ALshort *coeffs;
|
|
const ALubyte *delays;
|
|
|
|
struct Hrtf *next;
|
|
};
|
|
|
|
static const ALchar magicMarker00[8] = "MinPHR00";
|
|
static const ALchar magicMarker01[8] = "MinPHR01";
|
|
|
|
/* First value for pass-through coefficients (remaining are 0), used for omni-
|
|
* directional sounds. */
|
|
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
|
|
|
|
static struct Hrtf *LoadedHrtfs = NULL;
|
|
|
|
/* Calculate the elevation indices given the polar elevation in radians.
|
|
* This will return two indices between 0 and (evcount - 1) and an
|
|
* interpolation factor between 0.0 and 1.0.
|
|
*/
|
|
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
|
|
{
|
|
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
|
|
evidx[0] = fastf2u(ev);
|
|
evidx[1] = minu(evidx[0] + 1, evcount-1);
|
|
*evmu = ev - evidx[0];
|
|
}
|
|
|
|
/* Calculate the azimuth indices given the polar azimuth in radians. This
|
|
* will return two indices between 0 and (azcount - 1) and an interpolation
|
|
* factor between 0.0 and 1.0.
|
|
*/
|
|
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
|
|
{
|
|
az = (F_2PI + az) * azcount / (F_2PI);
|
|
azidx[0] = fastf2u(az) % azcount;
|
|
azidx[1] = (azidx[0] + 1) % azcount;
|
|
*azmu = az - floorf(az);
|
|
}
|
|
|
|
/* Calculates the normalized HRTF transition factor (delta) from the changes
|
|
* in gain and listener to source angle between updates. The result is a
|
|
* normalized delta factor that can be used to calculate moving HRIR stepping
|
|
* values.
|
|
*/
|
|
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
|
|
{
|
|
ALfloat gainChange, angleChange, change;
|
|
|
|
// Calculate the normalized dB gain change.
|
|
newGain = maxf(newGain, 0.0001f);
|
|
oldGain = maxf(oldGain, 0.0001f);
|
|
gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
|
|
|
|
// Calculate the angle change only when there is enough gain to notice it.
|
|
angleChange = 0.0f;
|
|
if(gainChange > 0.0001f || newGain > 0.0001f)
|
|
{
|
|
// No angle change when the directions are equal or degenerate (when
|
|
// both have zero length).
|
|
if(newdir[0] != olddir[0] || newdir[1] != olddir[1] || newdir[2] != olddir[2])
|
|
{
|
|
ALfloat dotp = olddir[0]*newdir[0] + olddir[1]*newdir[1] + olddir[2]*newdir[2];
|
|
angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
|
|
}
|
|
}
|
|
|
|
// Use the largest of the two changes for the delta factor, and apply a
|
|
// significance shaping function to it.
|
|
change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
|
|
return minf(change, 1.0f);
|
|
}
|
|
|
|
/* Calculates static HRIR coefficients and delays for the given polar
|
|
* elevation and azimuth in radians. Linear interpolation is used to
|
|
* increase the apparent resolution of the HRIR data set. The coefficients
|
|
* are also normalized and attenuated by the specified gain.
|
|
*/
|
|
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
|
|
{
|
|
ALuint evidx[2], lidx[4], ridx[4];
|
|
ALfloat mu[3], blend[4];
|
|
ALuint i;
|
|
|
|
/* Claculate elevation indices and interpolation factor. */
|
|
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
|
|
|
|
for(i = 0;i < 2;i++)
|
|
{
|
|
ALuint azcount = Hrtf->azCount[evidx[i]];
|
|
ALuint evoffset = Hrtf->evOffset[evidx[i]];
|
|
ALuint azidx[2];
|
|
|
|
/* Calculate azimuth indices and interpolation factor for this elevation. */
|
|
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
|
|
|
|
/* Calculate a set of linear HRIR indices for left and right channels. */
|
|
lidx[i*2 + 0] = evoffset + azidx[0];
|
|
lidx[i*2 + 1] = evoffset + azidx[1];
|
|
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
|
|
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
|
|
}
|
|
|
|
/* Calculate 4 blending weights for 2D bilinear interpolation. */
|
|
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
|
|
blend[1] = ( mu[0]) * (1.0f-mu[2]);
|
|
blend[2] = (1.0f-mu[1]) * ( mu[2]);
|
|
blend[3] = ( mu[1]) * ( mu[2]);
|
|
|
|
/* Calculate the HRIR delays using linear interpolation. */
|
|
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
|
|
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
|
|
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
|
|
/* Calculate the sample offsets for the HRIR indices. */
|
|
lidx[0] *= Hrtf->irSize;
|
|
lidx[1] *= Hrtf->irSize;
|
|
lidx[2] *= Hrtf->irSize;
|
|
lidx[3] *= Hrtf->irSize;
|
|
ridx[0] *= Hrtf->irSize;
|
|
ridx[1] *= Hrtf->irSize;
|
|
ridx[2] *= Hrtf->irSize;
|
|
ridx[3] *= Hrtf->irSize;
|
|
|
|
/* Calculate the normalized and attenuated HRIR coefficients using linear
|
|
* interpolation when there is enough gain to warrant it. Zero the
|
|
* coefficients if gain is too low.
|
|
*/
|
|
if(gain > 0.0001f)
|
|
{
|
|
ALfloat c;
|
|
|
|
i = 0;
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
|
|
for(i = 1;i < Hrtf->irSize;i++)
|
|
{
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < Hrtf->irSize;i++)
|
|
{
|
|
coeffs[i][0] = 0.0f;
|
|
coeffs[i][1] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculates the moving HRIR target coefficients, target delays, and
|
|
* stepping values for the given polar elevation and azimuth in radians.
|
|
* Linear interpolation is used to increase the apparent resolution of the
|
|
* HRIR data set. The coefficients are also normalized and attenuated by the
|
|
* specified gain. Stepping resolution and count is determined using the
|
|
* given delta factor between 0.0 and 1.0.
|
|
*/
|
|
ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
|
|
{
|
|
ALuint evidx[2], lidx[4], ridx[4];
|
|
ALfloat mu[3], blend[4];
|
|
ALfloat left, right;
|
|
ALfloat steps;
|
|
ALuint i;
|
|
|
|
/* Claculate elevation indices and interpolation factor. */
|
|
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
|
|
|
|
for(i = 0;i < 2;i++)
|
|
{
|
|
ALuint azcount = Hrtf->azCount[evidx[i]];
|
|
ALuint evoffset = Hrtf->evOffset[evidx[i]];
|
|
ALuint azidx[2];
|
|
|
|
/* Calculate azimuth indices and interpolation factor for this elevation. */
|
|
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
|
|
|
|
/* Calculate a set of linear HRIR indices for left and right channels. */
|
|
lidx[i*2 + 0] = evoffset + azidx[0];
|
|
lidx[i*2 + 1] = evoffset + azidx[1];
|
|
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
|
|
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
|
|
}
|
|
|
|
// Calculate the stepping parameters.
|
|
steps = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
|
|
delta = 1.0f / steps;
|
|
|
|
/* Calculate 4 blending weights for 2D bilinear interpolation. */
|
|
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
|
|
blend[1] = ( mu[0]) * (1.0f-mu[2]);
|
|
blend[2] = (1.0f-mu[1]) * ( mu[2]);
|
|
blend[3] = ( mu[1]) * ( mu[2]);
|
|
|
|
/* Calculate the HRIR delays using linear interpolation. Then calculate
|
|
* the delay stepping values using the target and previous running
|
|
* delays.
|
|
*/
|
|
left = (ALfloat)(delays[0] - (delayStep[0] * counter));
|
|
right = (ALfloat)(delays[1] - (delayStep[1] * counter));
|
|
|
|
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
|
|
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
|
|
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
|
|
dirfact + 0.5f) << HRTFDELAY_BITS;
|
|
|
|
delayStep[0] = fastf2i(delta * (delays[0] - left));
|
|
delayStep[1] = fastf2i(delta * (delays[1] - right));
|
|
|
|
/* Calculate the sample offsets for the HRIR indices. */
|
|
lidx[0] *= Hrtf->irSize;
|
|
lidx[1] *= Hrtf->irSize;
|
|
lidx[2] *= Hrtf->irSize;
|
|
lidx[3] *= Hrtf->irSize;
|
|
ridx[0] *= Hrtf->irSize;
|
|
ridx[1] *= Hrtf->irSize;
|
|
ridx[2] *= Hrtf->irSize;
|
|
ridx[3] *= Hrtf->irSize;
|
|
|
|
/* Calculate the normalized and attenuated target HRIR coefficients using
|
|
* linear interpolation when there is enough gain to warrant it. Zero
|
|
* the target coefficients if gain is too low. Then calculate the
|
|
* coefficient stepping values using the target and previous running
|
|
* coefficients.
|
|
*/
|
|
if(gain > 0.0001f)
|
|
{
|
|
ALfloat c;
|
|
|
|
i = 0;
|
|
left = coeffs[i][0] - (coeffStep[i][0] * counter);
|
|
right = coeffs[i][1] - (coeffStep[i][1] * counter);
|
|
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
|
|
|
|
coeffStep[i][0] = delta * (coeffs[i][0] - left);
|
|
coeffStep[i][1] = delta * (coeffs[i][1] - right);
|
|
|
|
for(i = 1;i < Hrtf->irSize;i++)
|
|
{
|
|
left = coeffs[i][0] - (coeffStep[i][0] * counter);
|
|
right = coeffs[i][1] - (coeffStep[i][1] * counter);
|
|
|
|
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
|
|
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
|
|
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
|
|
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
|
|
|
|
coeffStep[i][0] = delta * (coeffs[i][0] - left);
|
|
coeffStep[i][1] = delta * (coeffs[i][1] - right);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < Hrtf->irSize;i++)
|
|
{
|
|
left = coeffs[i][0] - (coeffStep[i][0] * counter);
|
|
right = coeffs[i][1] - (coeffStep[i][1] * counter);
|
|
|
|
coeffs[i][0] = 0.0f;
|
|
coeffs[i][1] = 0.0f;
|
|
|
|
coeffStep[i][0] = delta * -left;
|
|
coeffStep[i][1] = delta * -right;
|
|
}
|
|
}
|
|
|
|
/* The stepping count is the number of samples necessary for the HRIR to
|
|
* complete its transition. The mixer will only apply stepping for this
|
|
* many samples.
|
|
*/
|
|
return fastf2u(steps);
|
|
}
|
|
|
|
|
|
static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
|
|
{
|
|
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
|
|
struct Hrtf *Hrtf = NULL;
|
|
ALboolean failed = AL_FALSE;
|
|
ALuint rate = 0, irCount = 0;
|
|
ALushort irSize = 0;
|
|
ALubyte evCount = 0;
|
|
ALubyte *azCount = NULL;
|
|
ALushort *evOffset = NULL;
|
|
ALshort *coeffs = NULL;
|
|
ALubyte *delays = NULL;
|
|
ALuint i, j;
|
|
|
|
rate = fgetc(f);
|
|
rate |= fgetc(f)<<8;
|
|
rate |= fgetc(f)<<16;
|
|
rate |= fgetc(f)<<24;
|
|
|
|
irCount = fgetc(f);
|
|
irCount |= fgetc(f)<<8;
|
|
|
|
irSize = fgetc(f);
|
|
irSize |= fgetc(f)<<8;
|
|
|
|
evCount = fgetc(f);
|
|
|
|
if(rate != deviceRate)
|
|
{
|
|
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
|
|
rate, deviceRate);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
|
|
{
|
|
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
|
|
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(failed)
|
|
return NULL;
|
|
|
|
azCount = malloc(sizeof(azCount[0])*evCount);
|
|
evOffset = malloc(sizeof(evOffset[0])*evCount);
|
|
if(azCount == NULL || evOffset == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
evOffset[0] = fgetc(f);
|
|
evOffset[0] |= fgetc(f)<<8;
|
|
for(i = 1;i < evCount;i++)
|
|
{
|
|
evOffset[i] = fgetc(f);
|
|
evOffset[i] |= fgetc(f)<<8;
|
|
if(evOffset[i] <= evOffset[i-1])
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
|
|
i, evOffset[i], evOffset[i-1]);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
azCount[i-1] = evOffset[i] - evOffset[i-1];
|
|
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
if(irCount <= evOffset[i-1])
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
|
|
i-1, evOffset[i-1], irCount);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
azCount[i-1] = irCount - evOffset[i-1];
|
|
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
|
|
delays = malloc(sizeof(delays[0])*irCount);
|
|
if(coeffs == NULL || delays == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < irCount*irSize;i+=irSize)
|
|
{
|
|
for(j = 0;j < irSize;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = fgetc(f);
|
|
coeff |= fgetc(f)<<8;
|
|
coeffs[i+j] = coeff;
|
|
}
|
|
}
|
|
for(i = 0;i < irCount;i++)
|
|
{
|
|
delays[i] = fgetc(f);
|
|
if(delays[i] > maxDelay)
|
|
{
|
|
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(feof(f))
|
|
{
|
|
ERR("Premature end of data\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf = malloc(sizeof(struct Hrtf));
|
|
if(Hrtf == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->evCount = evCount;
|
|
Hrtf->azCount = azCount;
|
|
Hrtf->evOffset = evOffset;
|
|
Hrtf->coeffs = coeffs;
|
|
Hrtf->delays = delays;
|
|
Hrtf->next = NULL;
|
|
return Hrtf;
|
|
}
|
|
|
|
free(azCount);
|
|
free(evOffset);
|
|
free(coeffs);
|
|
free(delays);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate)
|
|
{
|
|
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
|
|
struct Hrtf *Hrtf = NULL;
|
|
ALboolean failed = AL_FALSE;
|
|
ALuint rate = 0, irCount = 0;
|
|
ALubyte irSize = 0, evCount = 0;
|
|
ALubyte *azCount = NULL;
|
|
ALushort *evOffset = NULL;
|
|
ALshort *coeffs = NULL;
|
|
ALubyte *delays = NULL;
|
|
ALuint i, j;
|
|
|
|
rate = fgetc(f);
|
|
rate |= fgetc(f)<<8;
|
|
rate |= fgetc(f)<<16;
|
|
rate |= fgetc(f)<<24;
|
|
|
|
irSize = fgetc(f);
|
|
|
|
evCount = fgetc(f);
|
|
|
|
if(rate != deviceRate)
|
|
{
|
|
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
|
|
rate, deviceRate);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
|
|
{
|
|
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
|
|
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
|
|
failed = AL_TRUE;
|
|
}
|
|
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(failed)
|
|
return NULL;
|
|
|
|
azCount = malloc(sizeof(azCount[0])*evCount);
|
|
evOffset = malloc(sizeof(evOffset[0])*evCount);
|
|
if(azCount == NULL || evOffset == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < evCount;i++)
|
|
{
|
|
azCount[i] = fgetc(f);
|
|
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
|
|
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
evOffset[0] = 0;
|
|
irCount = azCount[0];
|
|
for(i = 1;i < evCount;i++)
|
|
{
|
|
evOffset[i] = evOffset[i-1] + azCount[i-1];
|
|
irCount += azCount[i];
|
|
}
|
|
|
|
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
|
|
delays = malloc(sizeof(delays[0])*irCount);
|
|
if(coeffs == NULL || delays == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < irCount*irSize;i+=irSize)
|
|
{
|
|
for(j = 0;j < irSize;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = fgetc(f);
|
|
coeff |= fgetc(f)<<8;
|
|
coeffs[i+j] = coeff;
|
|
}
|
|
}
|
|
for(i = 0;i < irCount;i++)
|
|
{
|
|
delays[i] = fgetc(f);
|
|
if(delays[i] > maxDelay)
|
|
{
|
|
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(feof(f))
|
|
{
|
|
ERR("Premature end of data\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf = malloc(sizeof(struct Hrtf));
|
|
if(Hrtf == NULL)
|
|
{
|
|
ERR("Out of memory.\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->evCount = evCount;
|
|
Hrtf->azCount = azCount;
|
|
Hrtf->evOffset = evOffset;
|
|
Hrtf->coeffs = coeffs;
|
|
Hrtf->delays = delays;
|
|
Hrtf->next = NULL;
|
|
return Hrtf;
|
|
}
|
|
|
|
free(azCount);
|
|
free(evOffset);
|
|
free(coeffs);
|
|
free(delays);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static struct Hrtf *LoadHrtf(ALuint deviceRate)
|
|
{
|
|
const char *fnamelist = "default-%r.mhr";
|
|
|
|
ConfigValueStr(NULL, "hrtf_tables", &fnamelist);
|
|
while(*fnamelist != '\0')
|
|
{
|
|
struct Hrtf *Hrtf = NULL;
|
|
char fname[PATH_MAX];
|
|
const char *next;
|
|
ALchar magic[8];
|
|
ALuint i;
|
|
FILE *f;
|
|
|
|
i = 0;
|
|
while(isspace(*fnamelist) || *fnamelist == ',')
|
|
fnamelist++;
|
|
next = fnamelist;
|
|
while(*(fnamelist=next) != '\0' && *fnamelist != ',')
|
|
{
|
|
next = strpbrk(fnamelist, "%,");
|
|
while(fnamelist != next && *fnamelist && i < sizeof(fname))
|
|
fname[i++] = *(fnamelist++);
|
|
|
|
if(!next || *next == ',')
|
|
break;
|
|
|
|
/* *next == '%' */
|
|
next++;
|
|
if(*next == 'r')
|
|
{
|
|
int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate);
|
|
i += minu(wrote, sizeof(fname)-i);
|
|
next++;
|
|
}
|
|
else if(*next == '%')
|
|
{
|
|
if(i < sizeof(fname))
|
|
fname[i++] = '%';
|
|
next++;
|
|
}
|
|
else
|
|
ERR("Invalid marker '%%%c'\n", *next);
|
|
}
|
|
i = minu(i, sizeof(fname)-1);
|
|
fname[i] = '\0';
|
|
while(i > 0 && isspace(fname[i-1]))
|
|
i--;
|
|
fname[i] = '\0';
|
|
|
|
if(fname[0] == '\0')
|
|
continue;
|
|
|
|
TRACE("Loading %s...\n", fname);
|
|
f = OpenDataFile(fname, "openal/hrtf");
|
|
if(f == NULL)
|
|
{
|
|
ERR("Could not open %s\n", fname);
|
|
continue;
|
|
}
|
|
|
|
if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
|
|
ERR("Failed to read header from %s\n", fname);
|
|
else
|
|
{
|
|
if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
|
|
{
|
|
TRACE("Detected data set format v0\n");
|
|
Hrtf = LoadHrtf00(f, deviceRate);
|
|
}
|
|
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
|
|
{
|
|
TRACE("Detected data set format v1\n");
|
|
Hrtf = LoadHrtf01(f, deviceRate);
|
|
}
|
|
else
|
|
ERR("Invalid header in %s: \"%.8s\"\n", fname, magic);
|
|
}
|
|
|
|
fclose(f);
|
|
f = NULL;
|
|
|
|
if(Hrtf)
|
|
{
|
|
Hrtf->next = LoadedHrtfs;
|
|
LoadedHrtfs = Hrtf;
|
|
TRACE("Loaded HRTF support for format: %s %uhz\n",
|
|
DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate);
|
|
return Hrtf;
|
|
}
|
|
|
|
ERR("Failed to load %s\n", fname);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const struct Hrtf *GetHrtf(enum DevFmtChannels chans, ALCuint srate)
|
|
{
|
|
if(chans == DevFmtStereo)
|
|
{
|
|
struct Hrtf *Hrtf = LoadedHrtfs;
|
|
while(Hrtf != NULL)
|
|
{
|
|
if(srate == Hrtf->sampleRate)
|
|
return Hrtf;
|
|
Hrtf = Hrtf->next;
|
|
}
|
|
|
|
Hrtf = LoadHrtf(srate);
|
|
if(Hrtf != NULL)
|
|
return Hrtf;
|
|
}
|
|
ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(chans), srate);
|
|
return NULL;
|
|
}
|
|
|
|
ALCboolean FindHrtfFormat(enum DevFmtChannels *chans, ALCuint *srate)
|
|
{
|
|
const struct Hrtf *hrtf = LoadedHrtfs;
|
|
while(hrtf != NULL)
|
|
{
|
|
if(*srate == hrtf->sampleRate)
|
|
break;
|
|
hrtf = hrtf->next;
|
|
}
|
|
|
|
if(hrtf == NULL)
|
|
{
|
|
hrtf = LoadHrtf(*srate);
|
|
if(hrtf == NULL) return ALC_FALSE;
|
|
}
|
|
|
|
*chans = DevFmtStereo;
|
|
*srate = hrtf->sampleRate;
|
|
return ALC_TRUE;
|
|
}
|
|
|
|
void FreeHrtfs(void)
|
|
{
|
|
struct Hrtf *Hrtf = NULL;
|
|
|
|
while((Hrtf=LoadedHrtfs) != NULL)
|
|
{
|
|
LoadedHrtfs = Hrtf->next;
|
|
free((void*)Hrtf->azCount);
|
|
free((void*)Hrtf->evOffset);
|
|
free((void*)Hrtf->coeffs);
|
|
free((void*)Hrtf->delays);
|
|
free(Hrtf);
|
|
}
|
|
}
|
|
|
|
ALuint GetHrtfIrSize (const struct Hrtf *Hrtf)
|
|
{
|
|
return Hrtf->irSize;
|
|
}
|