openal-soft/Alc/hrtf.c
Chris Robinson c0e7aab823 Properly skip loading of already-loaded HRTF data sets
Previously, if an HRTF file was loaded it would not only skip loading it, but
it would also skip adding it to the output enumeration list. Now it properly
skips loading it when it's already loaded, but still adds it to the enumeration
list if it's not already in it.
2016-07-24 21:59:02 -07:00

1060 lines
32 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "hrtf.h"
#include "compat.h"
#include "almalloc.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (128)
#define MOD_IR_SIZE (8)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation indices given the polar elevation in radians.
* This will return two indices between 0 and (evcount - 1) and an
* interpolation factor between 0.0 and 1.0.
*/
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
evidx[0] = fastf2u(ev);
evidx[1] = minu(evidx[0] + 1, evcount-1);
*evmu = ev - evidx[0];
}
/* Calculate the azimuth indices given the polar azimuth in radians. This
* will return two indices between 0 and (azcount - 1) and an interpolation
* factor between 0.0 and 1.0.
*/
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
az = (F_TAU + az) * azcount / F_TAU;
azidx[0] = fastf2u(az) % azcount;
azidx[1] = (azidx[0] + 1) % azcount;
*azmu = az - floorf(az);
}
/* Calculates static HRIR coefficients and delays for the given polar
* elevation and azimuth in radians. Linear interpolation is used to
* increase the apparent resolution of the HRIR data set. The coefficients
* are also normalized and attenuated by the specified gain.
*/
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat spread, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALfloat dirfact;
ALuint i;
dirfact = 1.0f - (spread / F_TAU);
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. */
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated HRIR coefficients using linear
* interpolation when there is enough gain to warrant it. Zero the
* coefficients if gain is too low.
*/
if(gain > 0.0001f)
{
ALfloat c;
i = 0;
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
for(i = 1;i < Hrtf->irSize;i++)
{
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
}
static struct Hrtf *LoadHrtf00(FILE *f, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irCount = fgetc(f);
irCount |= fgetc(f)<<8;
irSize = fgetc(f);
irSize |= fgetc(f)<<8;
evCount = fgetc(f);
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = fgetc(f);
evOffset[0] |= fgetc(f)<<8;
for(i = 1;i < evCount;i++)
{
evOffset[i] = fgetc(f);
evOffset[i] |= fgetc(f)<<8;
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return Hrtf;
}
static struct Hrtf *LoadHrtf01(FILE *f, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irSize = fgetc(f);
evCount = fgetc(f);
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
azCount[i] = fgetc(f);
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return Hrtf;
}
static void AddFileEntry(vector_HrtfEntry *list, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
const char *name;
const char *ext;
ALchar magic[8];
FILE *f;
int i;
name = strrchr(al_string_get_cstr(*filename), '/');
if(!name) name = strrchr(al_string_get_cstr(*filename), '\\');
if(!name) name = al_string_get_cstr(*filename);
else ++name;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
f = al_fopen(al_string_get_cstr(*filename), "rb");
if(f == NULL)
{
ERR("Could not open %s\n", al_string_get_cstr(*filename));
goto done;
}
if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
ERR("Failed to read header from %s\n", al_string_get_cstr(*filename));
else
{
if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(f, *filename);
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(f, *filename);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), magic);
}
fclose(f);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
ext = strrchr(name, '.');
i = 0;
do {
if(!ext)
al_string_copy_cstr(&entry.name, name);
else
al_string_copy_range(&entry.name, name, ext);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding entry \"%s\" from file \"%s\"\n", al_string_get_cstr(entry.name),
al_string_get_cstr(*filename));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
/* Unfortunate that we have to duplicate LoadHrtf01 like this, to take a memory
* buffer for input instead of a FILE*, but there's no portable way to access a
* memory buffer through the standard FILE* I/O API (POSIX 2008 has fmemopen,
* and Windows doesn't seem to have anything).
*/
static struct Hrtf *LoadBuiltInHrtf01(const ALubyte *data, size_t datalen, const_al_string filename)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
const ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
const ALubyte *delays = NULL;
ALuint i, j;
if(datalen < 6)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), 6, datalen);
return NULL;
}
rate = *(data++);
rate |= *(data++)<<8;
rate |= *(data++)<<16;
rate |= *(data++)<<24;
datalen -= 4;
irSize = *(data++);
datalen -= 1;
evCount = *(data++);
datalen -= 1;
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
if(datalen < evCount)
{
ERR("Unexpected end of %s data (req %d, rem "SZFMT"\n",
al_string_get_cstr(filename), evCount, datalen);
return NULL;
}
azCount = data;
data += evCount;
datalen -= evCount;
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
if(coeffs == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
size_t reqsize = 2*irSize*irCount + irCount;
if(datalen < reqsize)
{
ERR("Unexpected end of %s data (req "SZFMT", rem "SZFMT"\n",
al_string_get_cstr(filename), reqsize, datalen);
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = *(data++);
coeff |= *(data++)<<8;
datalen -= 2;
coeffs[i+j] = coeff;
}
}
delays = data;
data += irCount;
datalen -= irCount;
for(i = 0;i < irCount;i++)
{
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
}
if(!failed)
{
size_t total = sizeof(struct Hrtf);
total += sizeof(azCount[0])*evCount;
total += sizeof(evOffset[0])*evCount;
total += sizeof(coeffs[0])*irSize*irCount;
total += sizeof(delays[0])*irCount;
total += al_string_length(filename)+1;
Hrtf = al_calloc(16, total);
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = ((ALubyte*)(Hrtf+1));
Hrtf->evOffset = ((ALushort*)(Hrtf->azCount + evCount));
Hrtf->coeffs = ((ALshort*)(Hrtf->evOffset + evCount));
Hrtf->delays = ((ALubyte*)(Hrtf->coeffs + irSize*irCount));
Hrtf->filename = ((char*)(Hrtf->delays + irCount));
Hrtf->next = NULL;
memcpy((void*)Hrtf->azCount, azCount, sizeof(azCount[0])*evCount);
memcpy((void*)Hrtf->evOffset, evOffset, sizeof(evOffset[0])*evCount);
memcpy((void*)Hrtf->coeffs, coeffs, sizeof(coeffs[0])*irSize*irCount);
memcpy((void*)Hrtf->delays, delays, sizeof(delays[0])*irCount);
memcpy((void*)Hrtf->filename, al_string_get_cstr(filename), al_string_length(filename)+1);
}
free(evOffset);
free(coeffs);
return Hrtf;
}
/* Another unfortunate duplication, this time of AddFileEntry to take a memory
* buffer for input instead of opening the given filename.
*/
static void AddBuiltInEntry(vector_HrtfEntry *list, const ALubyte *data, size_t datalen, al_string *filename)
{
HrtfEntry entry = { AL_STRING_INIT_STATIC(), NULL };
struct Hrtf *hrtf = NULL;
const HrtfEntry *iter;
int i;
#define MATCH_FNAME(i) (al_string_cmp_cstr(*filename, (i)->hrtf->filename) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_FNAME);
if(iter != VECTOR_END(*list))
{
TRACE("Skipping duplicate file entry %s\n", al_string_get_cstr(*filename));
goto done;
}
#undef MATCH_FNAME
entry.hrtf = LoadedHrtfs;
while(entry.hrtf)
{
if(al_string_cmp_cstr(*filename, entry.hrtf->filename) == 0)
{
TRACE("Skipping load of already-loaded file %s\n", al_string_get_cstr(*filename));
goto skip_load;
}
entry.hrtf = entry.hrtf->next;
}
TRACE("Loading %s...\n", al_string_get_cstr(*filename));
if(datalen < sizeof(magicMarker01))
{
ERR("%s data is too short ("SZFMT" bytes)\n", al_string_get_cstr(*filename), datalen);
goto done;
}
if(memcmp(data, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadBuiltInHrtf01(
data+sizeof(magicMarker01), datalen-sizeof(magicMarker01),
*filename
);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", al_string_get_cstr(*filename), data);
if(!hrtf)
{
ERR("Failed to load %s\n", al_string_get_cstr(*filename));
goto done;
}
hrtf->next = LoadedHrtfs;
LoadedHrtfs = hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), hrtf->sampleRate);
entry.hrtf = hrtf;
skip_load:
i = 0;
do {
al_string_copy(&entry.name, *filename);
if(i != 0)
{
char str[64];
snprintf(str, sizeof(str), " #%d", i+1);
al_string_append_cstr(&entry.name, str);
}
++i;
#define MATCH_NAME(i) (al_string_cmp(entry.name, (i)->name) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, *list, MATCH_NAME);
#undef MATCH_NAME
} while(iter != VECTOR_END(*list));
TRACE("Adding built-in entry \"%s\"\n", al_string_get_cstr(entry.name));
VECTOR_PUSH_BACK(*list, entry);
done:
al_string_deinit(filename);
}
#ifndef ALSOFT_EMBED_HRTF_DATA
#define IDR_DEFAULT_44100_MHR 0
#define IDR_DEFAULT_48000_MHR 1
static const ALubyte *GetResource(int UNUSED(name), size_t *size)
{
*size = 0;
return NULL;
}
#else
#include "hrtf_res.h"
#ifdef _WIN32
static const ALubyte *GetResource(int name, size_t *size)
{
HMODULE handle;
HGLOBAL res;
HRSRC rc;
GetModuleHandleExW(
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCWSTR)GetResource, &handle
);
rc = FindResourceW(handle, MAKEINTRESOURCEW(name), MAKEINTRESOURCEW(MHRTYPE));
res = LoadResource(handle, rc);
*size = SizeofResource(handle, rc);
return LockResource(res);
}
#else
extern const ALubyte _binary_default_44100_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_44100_mhr_size[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_start[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_end[] HIDDEN_DECL;
extern const ALubyte _binary_default_48000_mhr_size[] HIDDEN_DECL;
static const ALubyte *GetResource(int name, size_t *size)
{
if(name == IDR_DEFAULT_44100_MHR)
{
/* Make sure all symbols are referenced, to ensure the compiler won't
* ignore the declarations and lose the visibility attribute used to
* hide them (would be nice if ld or objcopy could automatically mark
* them as hidden when generating them, but apparently they can't).
*/
const void *volatile ptr =_binary_default_44100_mhr_size;
(void)ptr;
*size = _binary_default_44100_mhr_end - _binary_default_44100_mhr_start;
return _binary_default_44100_mhr_start;
}
if(name == IDR_DEFAULT_48000_MHR)
{
const void *volatile ptr =_binary_default_48000_mhr_size;
(void)ptr;
*size = _binary_default_48000_mhr_end - _binary_default_48000_mhr_start;
return _binary_default_48000_mhr_start;
}
*size = 0;
return NULL;
}
#endif
#endif
vector_HrtfEntry EnumerateHrtf(const_al_string devname)
{
vector_HrtfEntry list = VECTOR_INIT_STATIC();
const char *defaulthrtf = "";
const char *pathlist = "";
bool usedefaults = true;
if(ConfigValueStr(al_string_get_cstr(devname), NULL, "hrtf-paths", &pathlist))
{
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
al_string pname = AL_STRING_INIT_STATIC();
vector_al_string flist;
al_string_append_range(&pname, pathlist, end);
flist = SearchDataFiles(".mhr", al_string_get_cstr(pname));
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
al_string_deinit(&pname);
}
pathlist = next;
}
}
else if(ConfigValueExists(al_string_get_cstr(devname), NULL, "hrtf_tables"))
ERR("The hrtf_tables option is deprecated, please use hrtf-paths instead.\n");
if(usedefaults)
{
vector_al_string flist;
const ALubyte *rdata;
size_t rsize;
flist = SearchDataFiles(".mhr", "openal/hrtf");
VECTOR_FOR_EACH_PARAMS(al_string, flist, AddFileEntry, &list);
VECTOR_DEINIT(flist);
rdata = GetResource(IDR_DEFAULT_44100_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 44100hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
rdata = GetResource(IDR_DEFAULT_48000_MHR, &rsize);
if(rdata != NULL && rsize > 0)
{
al_string ename = AL_STRING_INIT_STATIC();
al_string_copy_cstr(&ename, "Built-In 48000hz");
AddBuiltInEntry(&list, rdata, rsize, &ename);
}
}
if(VECTOR_SIZE(list) > 1 && ConfigValueStr(al_string_get_cstr(devname), NULL, "default-hrtf", &defaulthrtf))
{
const HrtfEntry *iter;
/* Find the preferred HRTF and move it to the front of the list. */
#define FIND_ENTRY(i) (al_string_cmp_cstr((i)->name, defaulthrtf) == 0)
VECTOR_FIND_IF(iter, const HrtfEntry, list, FIND_ENTRY);
if(iter != VECTOR_END(list) && iter != VECTOR_BEGIN(list))
{
HrtfEntry entry = *iter;
memmove(&VECTOR_ELEM(list,1), &VECTOR_ELEM(list,0),
(iter-VECTOR_BEGIN(list))*sizeof(HrtfEntry));
VECTOR_ELEM(list,0) = entry;
}
else
WARN("Failed to find default HRTF \"%s\"\n", defaulthrtf);
#undef FIND_ENTRY
}
return list;
}
void FreeHrtfList(vector_HrtfEntry *list)
{
#define CLEAR_ENTRY(i) do { \
al_string_deinit(&(i)->name); \
} while(0)
VECTOR_FOR_EACH(HrtfEntry, *list, CLEAR_ENTRY);
VECTOR_DEINIT(*list);
#undef CLEAR_ENTRY
}
void FreeHrtfs(void)
{
struct Hrtf *Hrtf = LoadedHrtfs;
LoadedHrtfs = NULL;
while(Hrtf != NULL)
{
struct Hrtf *next = Hrtf->next;
al_free(Hrtf);
Hrtf = next;
}
}