openal-soft/alc/effects/convolution.cpp
2020-08-31 06:43:42 -07:00

541 lines
19 KiB
C++

#include "config.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcomplex.h"
#include "alcontext.h"
#include "almalloc.h"
#include "alspan.h"
#include "ambidefs.h"
#include "bformatdec.h"
#include "buffer_storage.h"
#include "effects/base.h"
#include "filters/splitter.h"
#include "fmt_traits.h"
#include "logging.h"
#include "polyphase_resampler.h"
namespace {
/* Convolution reverb is implemented using a segmented overlap-add method. The
* impulse response is broken up into multiple segments of 512 samples, and
* each segment has an FFT applied with a 1024-sample buffer (the latter half
* left silent) to get its frequency-domain response. The resulting response
* has its positive/non-mirrored frequencies saved (513 bins) in each segment.
*
* Input samples are similarly broken up into 512-sample segments, with an FFT
* applied to each new incoming segment to get its 513 bins. A history of FFT'd
* input segments is maintained, equal to the length of the impulse response.
*
* To apply the reverberation, each impulse response segment is convolved with
* its paired input segment (using complex multiplies, far cheaper than FIRs),
* accumulating into a 1024-bin FFT buffer. The input history is then shifted
* to align with later impulse response segments for next time.
*
* An inverse FFT is then applied to the accumulated FFT buffer to get a 1024-
* sample time-domain response for output, which is split in two halves. The
* first half is the 512-sample output, and the second half is a 512-sample
* (really, 511) delayed extension, which gets added to the output next time.
* Convolving two time-domain responses of lengths N and M results in a time-
* domain signal of length N+M-1, and this holds true regardless of the
* convolution being applied in the frequency domain, so these "overflow"
* samples need to be accounted for.
*
* Limitations:
* There is currently a 512-sample delay on the output, as a result of needing
* to collect that many input samples to do an FFT with. This can be fixed by
* excluding the first impulse response segment from being FFT'd, and applying
* it directly in the time domain. This will have higher CPU consumption, but
* it won't have to wait before generating output.
*/
void LoadSamples(double *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: al::LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
}
#undef HANDLE_FMT
}
auto GetAmbiScales(AmbiScaling scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
{
if(scaletype == AmbiScaling::FuMa) return AmbiScale::FromFuMa;
if(scaletype == AmbiScaling::SN3D) return AmbiScale::FromSN3D;
return AmbiScale::FromN3D;
}
auto GetAmbiLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI_CHANNELS>&
{
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa;
return AmbiIndex::FromACN;
}
auto GetAmbi2DLayout(AmbiLayout layouttype) noexcept -> const std::array<uint8_t,MAX_AMBI2D_CHANNELS>&
{
if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D;
return AmbiIndex::From2D;
}
using complex_d = std::complex<double>;
constexpr size_t ConvolveUpdateSize{1024};
constexpr size_t ConvolveUpdateSamples{ConvolveUpdateSize / 2};
struct ConvolutionFilter final : public EffectBufferBase {
FmtChannels mChannels{};
AmbiLayout mAmbiLayout{};
AmbiScaling mAmbiScaling{};
ALuint mAmbiOrder{};
size_t mFifoPos{0};
al::vector<std::array<double,ConvolveUpdateSamples*2>,16> mOutput;
alignas(16) std::array<complex_d,ConvolveUpdateSize> mFftBuffer{};
size_t mCurrentSegment{0};
size_t mNumConvolveSegs{0};
struct ChannelData {
alignas(16) FloatBufferLine mBuffer{};
float mHfScale{};
BandSplitter mFilter{};
float Current[MAX_OUTPUT_CHANNELS]{};
float Target[MAX_OUTPUT_CHANNELS]{};
};
using ChannelDataArray = al::FlexArray<ChannelData>;
std::unique_ptr<ChannelDataArray> mChans;
std::unique_ptr<complex_d[]> mComplexData;
ConvolutionFilter(size_t numChannels) : mChans{ChannelDataArray::Create(numChannels)}
{ }
bool init(const ALCdevice *device, const BufferStorage &buffer);
void NormalMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
void UpsampleMix(const al::span<FloatBufferLine> samplesOut, const size_t samplesToDo);
void (ConvolutionFilter::*mMix)(const al::span<FloatBufferLine>,const size_t)
{&ConvolutionFilter::NormalMix};
void update(al::span<FloatBufferLine> &outTarget, const ALCcontext *context,
const ALeffectslot *slot, const EffectProps *props, const EffectTarget target);
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
const al::span<FloatBufferLine> samplesOut);
DEF_NEWDEL(ConvolutionFilter)
};
bool ConvolutionFilter::init(const ALCdevice *device, const BufferStorage &buffer)
{
constexpr size_t m{ConvolveUpdateSize/2 + 1};
/* FIXME: Support anything. */
if(buffer.mChannels != FmtMono && buffer.mChannels != FmtStereo
&& buffer.mChannels != FmtBFormat2D && buffer.mChannels != FmtBFormat3D)
return false;
if((buffer.mChannels == FmtBFormat2D || buffer.mChannels == FmtBFormat3D)
&& buffer.mAmbiOrder > 1)
return false;
/* The impulse response needs to have the same sample rate as the input and
* output. The bsinc24 resampler is decent, but there is high-frequency
* attenation that some people may be able to pick up on. Since this is
* very infrequent called, go ahead and use the polyphase resampler.
*/
PPhaseResampler resampler;
if(device->Frequency != buffer.mSampleRate)
resampler.init(buffer.mSampleRate, device->Frequency);
const auto resampledCount = static_cast<ALuint>(
(uint64_t{buffer.mSampleLen}*device->Frequency + (buffer.mSampleRate-1)) /
buffer.mSampleRate);
auto bytesPerSample = BytesFromFmt(buffer.mType);
auto realChannels = ChannelsFromFmt(buffer.mChannels, buffer.mAmbiOrder);
auto numChannels = mChans->size();
const BandSplitter splitter{400.0f / static_cast<float>(device->Frequency)};
for(auto &e : *mChans)
e.mFilter = splitter;
mOutput.resize(numChannels, {});
/* Calculate the number of segments needed to hold the impulse response and
* the input history (rounded up), and allocate them.
*/
mNumConvolveSegs = (resampledCount+(ConvolveUpdateSamples-1)) / ConvolveUpdateSamples;
const size_t complex_length{mNumConvolveSegs * m * (numChannels+1)};
mComplexData = std::make_unique<complex_d[]>(complex_length);
std::fill_n(mComplexData.get(), complex_length, complex_d{});
mChannels = buffer.mChannels;
mAmbiLayout = buffer.mAmbiLayout;
mAmbiScaling = buffer.mAmbiScaling;
mAmbiOrder = buffer.mAmbiOrder;
auto fftbuffer = std::make_unique<std::array<complex_d,ConvolveUpdateSize>>();
auto srcsamples = std::make_unique<double[]>(maxz(buffer.mSampleLen, resampledCount));
complex_d *filteriter = mComplexData.get() + mNumConvolveSegs*m;
for(size_t c{0};c < numChannels;++c)
{
/* Load the samples from the buffer, and resample to match the device. */
LoadSamples(srcsamples.get(), buffer.mData.data() + bytesPerSample*c, realChannels,
buffer.mType, buffer.mSampleLen);
if(device->Frequency != buffer.mSampleRate)
resampler.process(buffer.mSampleLen, srcsamples.get(), resampledCount,
srcsamples.get());
size_t done{0};
for(size_t s{0};s < mNumConvolveSegs;++s)
{
const size_t todo{minz(resampledCount-done, ConvolveUpdateSamples)};
auto iter = std::copy_n(&srcsamples[done], todo, fftbuffer->begin());
done += todo;
std::fill(iter, fftbuffer->end(), complex_d{});
complex_fft(*fftbuffer, -1.0);
filteriter = std::copy_n(fftbuffer->cbegin(), m, filteriter);
}
}
return true;
}
void ConvolutionFilter::NormalMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
for(auto &chan : *mChans)
MixSamples({chan.mBuffer.data(), samplesToDo}, samplesOut, chan.Current, chan.Target,
samplesToDo, 0);
}
void ConvolutionFilter::UpsampleMix(const al::span<FloatBufferLine> samplesOut,
const size_t samplesToDo)
{
for(auto &chan : *mChans)
{
const al::span<float> src{chan.mBuffer.data(), samplesToDo};
chan.mFilter.processHfScale(src, chan.mHfScale);
MixSamples(src, samplesOut, chan.Current, chan.Target, samplesToDo, 0);
}
}
void ConvolutionFilter::update(al::span<FloatBufferLine> &outTarget, const ALCcontext *context,
const ALeffectslot *slot, const EffectProps* /*props*/, const EffectTarget target)
{
ALCdevice *device{context->mDevice.get()};
mMix = &ConvolutionFilter::NormalMix;
/* The iFFT'd response is scaled up by the number of bins, so apply the
* inverse to the output mixing gain.
*/
constexpr size_t m{ConvolveUpdateSize/2 + 1};
const float gain{slot->Params.Gain * (1.0f/m)};
auto &chans = *mChans;
if(mChannels == FmtBFormat3D || mChannels == FmtBFormat2D)
{
if(device->mAmbiOrder > mAmbiOrder)
{
mMix = &ConvolutionFilter::UpsampleMix;
const auto scales = BFormatDec::GetHFOrderScales(mAmbiOrder, device->mAmbiOrder);
chans[0].mHfScale = scales[0];
for(size_t i{1};i < chans.size();++i)
chans[i].mHfScale = scales[1];
}
outTarget = target.Main->Buffer;
const auto &scales = GetAmbiScales(mAmbiScaling);
const uint8_t *index_map{(mChannels == FmtBFormat2D) ?
GetAmbi2DLayout(mAmbiLayout).data() :
GetAmbiLayout(mAmbiLayout).data()};
std::array<float,MAX_AMBI_CHANNELS> coeffs{};
for(size_t c{0u};c < chans.size();++c)
{
const size_t acn{index_map[c]};
coeffs[acn] = scales[acn];
ComputePanGains(target.Main, coeffs.data(), gain, chans[c].Target);
coeffs[acn] = 0.0f;
}
}
else if(mChannels == FmtStereo)
{
/* TODO: Add a "direct channels" setting for this effect? */
const ALuint lidx{!target.RealOut ? INVALID_CHANNEL_INDEX :
GetChannelIdxByName(*target.RealOut, FrontLeft)};
const ALuint ridx{!target.RealOut ? INVALID_CHANNEL_INDEX :
GetChannelIdxByName(*target.RealOut, FrontRight)};
if(lidx != INVALID_CHANNEL_INDEX && ridx != INVALID_CHANNEL_INDEX)
{
outTarget = target.RealOut->Buffer;
chans[0].Target[lidx] = gain;
chans[1].Target[ridx] = gain;
}
else
{
const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
outTarget = target.Main->Buffer;
ComputePanGains(target.Main, lcoeffs.data(), gain, chans[0].Target);
ComputePanGains(target.Main, rcoeffs.data(), gain, chans[1].Target);
}
}
else if(mChannels == FmtMono)
{
const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);
outTarget = target.Main->Buffer;
ComputePanGains(target.Main, coeffs.data(), gain, chans[0].Target);
}
}
void ConvolutionFilter::process(const size_t samplesToDo,
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
constexpr size_t m{ConvolveUpdateSize/2 + 1};
size_t curseg{mCurrentSegment};
auto &chans = *mChans;
for(size_t base{0u};base < samplesToDo;)
{
const size_t todo{minz(ConvolveUpdateSamples-mFifoPos, samplesToDo-base)};
/* Retrieve the output samples from the FIFO and fill in the new input
* samples.
*/
for(size_t c{0};c < chans.size();++c)
{
auto fifo_iter = mOutput[c].begin() + mFifoPos;
std::transform(fifo_iter, fifo_iter+todo, chans[c].mBuffer.begin()+base,
[](double d) noexcept -> float { return static_cast<float>(d); });
}
std::copy_n(samplesIn[0].begin()+base, todo, mFftBuffer.begin()+mFifoPos);
mFifoPos += todo;
base += todo;
/* Check whether FIFO buffer is filled with new samples. */
if(mFifoPos < ConvolveUpdateSamples) break;
mFifoPos = 0;
/* Calculate the frequency domain response and add the relevant
* frequency bins to the input history.
*/
complex_fft(mFftBuffer, -1.0);
std::copy_n(mFftBuffer.begin(), m, &mComplexData[curseg*m]);
mFftBuffer.fill(complex_d{});
const complex_d *RESTRICT filter{mComplexData.get() + mNumConvolveSegs*m};
for(size_t c{0};c < chans.size();++c)
{
/* Convolve each input segment with its IR filter counterpart
* (aligned in time).
*/
const complex_d *RESTRICT input{&mComplexData[curseg*m]};
for(size_t s{curseg};s < mNumConvolveSegs;++s)
{
for(size_t i{0};i < m;++i,++input,++filter)
mFftBuffer[i] += *input * *filter;
}
input = mComplexData.get();
for(size_t s{0};s < curseg;++s)
{
for(size_t i{0};i < m;++i,++input,++filter)
mFftBuffer[i] += *input * *filter;
}
/* Apply iFFT to get the 1024 (really 1023) samples for output. The
* 512 output samples are combined with the last output's 511
* second-half samples (and this output's second half is
* subsequently saved for next time).
*/
complex_fft(mFftBuffer, 1.0);
for(size_t i{0};i < ConvolveUpdateSamples;++i)
mOutput[c][i] = mFftBuffer[i].real() + mOutput[c][ConvolveUpdateSamples+i];
for(size_t i{0};i < ConvolveUpdateSamples;++i)
mOutput[c][ConvolveUpdateSamples+i] = mFftBuffer[ConvolveUpdateSamples+i].real();
mFftBuffer.fill(complex_d{});
}
/* Shift the input history. */
curseg = curseg ? (curseg-1) : (mNumConvolveSegs-1);
}
mCurrentSegment = curseg;
/* Finally, mix to the output. */
(this->*mMix)(samplesOut, samplesToDo);
}
struct ConvolutionState final : public EffectState {
ConvolutionFilter *mFilter{};
ConvolutionState() = default;
~ConvolutionState() override = default;
void deviceUpdate(const ALCdevice *device) override;
EffectBufferBase *createBuffer(const ALCdevice *device, const BufferStorage &buffer) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
DEF_NEWDEL(ConvolutionState)
};
void ConvolutionState::deviceUpdate(const ALCdevice* /*device*/)
{
}
EffectBufferBase *ConvolutionState::createBuffer(const ALCdevice *device,
const BufferStorage &buffer)
{
/* An empty buffer doesn't need a convolution filter. */
if(buffer.mSampleLen < 1) return nullptr;
auto numChannels = ChannelsFromFmt(buffer.mChannels,
minu(buffer.mAmbiOrder, device->mAmbiOrder));
al::intrusive_ptr<ConvolutionFilter> filter{new ConvolutionFilter{numChannels}};
if LIKELY(filter->init(device, buffer))
return filter.release();
return nullptr;
}
void ConvolutionState::update(const ALCcontext *context, const ALeffectslot *slot,
const EffectProps *props, const EffectTarget target)
{
mFilter = static_cast<ConvolutionFilter*>(slot->Params.mEffectBuffer);
if(!mFilter) return;
mFilter->update(mOutTarget, context, slot, props, target);
}
void ConvolutionState::process(const size_t samplesToDo,
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
if(mFilter)
mFilter->process(samplesToDo, samplesIn, samplesOut);
}
void ConvolutionEffect_setParami(EffectProps* /*props*/, ALenum param, int /*val*/)
{
switch(param)
{
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
param};
}
}
void ConvolutionEffect_setParamiv(EffectProps *props, ALenum param, const int *vals)
{
switch(param)
{
default:
ConvolutionEffect_setParami(props, param, vals[0]);
}
}
void ConvolutionEffect_setParamf(EffectProps* /*props*/, ALenum param, float /*val*/)
{
switch(param)
{
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
param};
}
}
void ConvolutionEffect_setParamfv(EffectProps *props, ALenum param, const float *vals)
{
switch(param)
{
default:
ConvolutionEffect_setParamf(props, param, vals[0]);
}
}
void ConvolutionEffect_getParami(const EffectProps* /*props*/, ALenum param, int* /*val*/)
{
switch(param)
{
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect integer property 0x%04x",
param};
}
}
void ConvolutionEffect_getParamiv(const EffectProps *props, ALenum param, int *vals)
{
switch(param)
{
default:
ConvolutionEffect_getParami(props, param, vals);
}
}
void ConvolutionEffect_getParamf(const EffectProps* /*props*/, ALenum param, float* /*val*/)
{
switch(param)
{
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid null effect float property 0x%04x",
param};
}
}
void ConvolutionEffect_getParamfv(const EffectProps *props, ALenum param, float *vals)
{
switch(param)
{
default:
ConvolutionEffect_getParamf(props, param, vals);
}
}
DEFINE_ALEFFECT_VTABLE(ConvolutionEffect);
struct ConvolutionStateFactory final : public EffectStateFactory {
EffectState *create() override;
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override;
};
/* Creates EffectState objects of the appropriate type. */
EffectState *ConvolutionStateFactory::create()
{ return new ConvolutionState{}; }
/* Returns an ALeffectProps initialized with this effect type's default
* property values.
*/
EffectProps ConvolutionStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
return props;
}
/* Returns a pointer to this effect type's global set/get vtable. */
const EffectVtable *ConvolutionStateFactory::getEffectVtable() const noexcept
{ return &ConvolutionEffect_vtable; }
} // namespace
EffectStateFactory *ConvolutionStateFactory_getFactory()
{
static ConvolutionStateFactory ConvolutionFactory{};
return &ConvolutionFactory;
}