132 lines
4.8 KiB
C++
132 lines
4.8 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "uhjfilter.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "alu.h"
|
|
|
|
namespace {
|
|
|
|
/* This is the maximum number of samples processed for each inner loop
|
|
* iteration. */
|
|
#define MAX_UPDATE_SAMPLES 128
|
|
|
|
|
|
constexpr ALfloat Filter1CoeffSqr[4] = {
|
|
0.479400865589f, 0.876218493539f, 0.976597589508f, 0.997499255936f
|
|
};
|
|
constexpr ALfloat Filter2CoeffSqr[4] = {
|
|
0.161758498368f, 0.733028932341f, 0.945349700329f, 0.990599156685f
|
|
};
|
|
|
|
void allpass_process(AllPassState *state, ALfloat *dst, const ALfloat *src, const ALfloat aa, ALsizei todo)
|
|
{
|
|
ALfloat z1{state->z[0]};
|
|
ALfloat z2{state->z[1]};
|
|
auto proc_sample = [aa,&z1,&z2](ALfloat input) noexcept -> ALfloat
|
|
{
|
|
ALfloat output = input*aa + z1;
|
|
z1 = z2; z2 = output*aa - input;
|
|
return output;
|
|
};
|
|
std::transform(src, src+todo, dst, proc_sample);
|
|
state->z[0] = z1;
|
|
state->z[1] = z2;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/* NOTE: There seems to be a bit of an inconsistency in how this encoding is
|
|
* supposed to work. Some references, such as
|
|
*
|
|
* http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html
|
|
*
|
|
* specify a pre-scaling of sqrt(2) on the W channel input, while other
|
|
* references, such as
|
|
*
|
|
* https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D
|
|
* and
|
|
* https://wiki.xiph.org/Ambisonics#UHJ_format
|
|
*
|
|
* do not. The sqrt(2) scaling is in line with B-Format decoder coefficients
|
|
* which include such a scaling for the W channel input, however the original
|
|
* source for this equation is a 1985 paper by Michael Gerzon, which does not
|
|
* apparently include the scaling. Applying the extra scaling creates a louder
|
|
* result with a narrower stereo image compared to not scaling, and I don't
|
|
* know which is the intended result.
|
|
*/
|
|
|
|
void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, FloatBufferLine *InSamples, const ALsizei SamplesToDo)
|
|
{
|
|
alignas(16) ALfloat D[MAX_UPDATE_SAMPLES], S[MAX_UPDATE_SAMPLES];
|
|
alignas(16) ALfloat temp[MAX_UPDATE_SAMPLES];
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
auto winput = InSamples[0].cbegin();
|
|
auto xinput = InSamples[1].cbegin();
|
|
auto yinput = InSamples[2].cbegin();
|
|
for(ALsizei base{0};base < SamplesToDo;)
|
|
{
|
|
const ALsizei todo{mini(SamplesToDo - base, MAX_UPDATE_SAMPLES)};
|
|
ASSUME(todo > 0);
|
|
|
|
/* D = 0.6554516*Y */
|
|
std::transform(yinput, yinput+todo, std::begin(temp),
|
|
[](const float y) noexcept -> float { return 0.6554516f*y; });
|
|
allpass_process(&mFilter1_Y[0], temp, temp, Filter1CoeffSqr[0], todo);
|
|
allpass_process(&mFilter1_Y[1], temp, temp, Filter1CoeffSqr[1], todo);
|
|
allpass_process(&mFilter1_Y[2], temp, temp, Filter1CoeffSqr[2], todo);
|
|
allpass_process(&mFilter1_Y[3], temp, temp, Filter1CoeffSqr[3], todo);
|
|
/* NOTE: Filter1 requires a 1 sample delay for the final output, so
|
|
* take the last processed sample from the previous run as the first
|
|
* output sample.
|
|
*/
|
|
D[0] = mLastY;
|
|
for(ALsizei i{1};i < todo;i++)
|
|
D[i] = temp[i-1];
|
|
mLastY = temp[todo-1];
|
|
|
|
/* D += j(-0.3420201*W + 0.5098604*X) */
|
|
std::transform(winput, winput+todo, xinput, std::begin(temp),
|
|
[](const float w, const float x) noexcept -> float
|
|
{ return -0.3420201f*w + 0.5098604f*x; });
|
|
allpass_process(&mFilter2_WX[0], temp, temp, Filter2CoeffSqr[0], todo);
|
|
allpass_process(&mFilter2_WX[1], temp, temp, Filter2CoeffSqr[1], todo);
|
|
allpass_process(&mFilter2_WX[2], temp, temp, Filter2CoeffSqr[2], todo);
|
|
allpass_process(&mFilter2_WX[3], temp, temp, Filter2CoeffSqr[3], todo);
|
|
for(ALsizei i{0};i < todo;i++)
|
|
D[i] += temp[i];
|
|
|
|
/* S = 0.9396926*W + 0.1855740*X */
|
|
std::transform(winput, winput+todo, xinput, std::begin(temp),
|
|
[](const float w, const float x) noexcept -> float
|
|
{ return 0.9396926f*w + 0.1855740f*x; });
|
|
allpass_process(&mFilter1_WX[0], temp, temp, Filter1CoeffSqr[0], todo);
|
|
allpass_process(&mFilter1_WX[1], temp, temp, Filter1CoeffSqr[1], todo);
|
|
allpass_process(&mFilter1_WX[2], temp, temp, Filter1CoeffSqr[2], todo);
|
|
allpass_process(&mFilter1_WX[3], temp, temp, Filter1CoeffSqr[3], todo);
|
|
S[0] = mLastWX;
|
|
for(ALsizei i{1};i < todo;i++)
|
|
S[i] = temp[i-1];
|
|
mLastWX = temp[todo-1];
|
|
|
|
/* Left = (S + D)/2.0 */
|
|
ALfloat *RESTRICT left = al::assume_aligned<16>(LeftOut.data()+base);
|
|
for(ALsizei i{0};i < todo;i++)
|
|
left[i] += (S[i] + D[i]) * 0.5f;
|
|
/* Right = (S - D)/2.0 */
|
|
ALfloat *RESTRICT right = al::assume_aligned<16>(RightOut.data()+base);
|
|
for(ALsizei i{0};i < todo;i++)
|
|
right[i] += (S[i] - D[i]) * 0.5f;
|
|
|
|
winput += todo;
|
|
xinput += todo;
|
|
yinput += todo;
|
|
base += todo;
|
|
}
|
|
}
|