926 lines
34 KiB
C++
926 lines
34 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "voice.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <utility>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
|
|
#include "al/buffer.h"
|
|
#include "al/event.h"
|
|
#include "al/source.h"
|
|
#include "alcmain.h"
|
|
#include "albyte.h"
|
|
#include "alconfig.h"
|
|
#include "alcontext.h"
|
|
#include "alnumeric.h"
|
|
#include "aloptional.h"
|
|
#include "alspan.h"
|
|
#include "alstring.h"
|
|
#include "alu.h"
|
|
#include "cpu_caps.h"
|
|
#include "devformat.h"
|
|
#include "filters/biquad.h"
|
|
#include "filters/nfc.h"
|
|
#include "filters/splitter.h"
|
|
#include "hrtf.h"
|
|
#include "inprogext.h"
|
|
#include "logging.h"
|
|
#include "mixer/defs.h"
|
|
#include "opthelpers.h"
|
|
#include "ringbuffer.h"
|
|
#include "threads.h"
|
|
#include "vector.h"
|
|
|
|
struct CTag;
|
|
#ifdef HAVE_SSE
|
|
struct SSETag;
|
|
#endif
|
|
#ifdef HAVE_NEON
|
|
struct NEONTag;
|
|
#endif
|
|
struct CopyTag;
|
|
|
|
|
|
static_assert((BUFFERSIZE-1)/MAX_PITCH > 0, "MAX_PITCH is too large for BUFFERSIZE!");
|
|
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
|
|
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
|
|
|
|
|
|
Resampler ResamplerDefault{Resampler::Linear};
|
|
|
|
MixerFunc MixSamples{Mix_<CTag>};
|
|
|
|
namespace {
|
|
|
|
using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
|
|
const MixHrtfFilter *hrtfparams, const size_t BufferSize);
|
|
using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
|
|
const ALuint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
|
|
const size_t BufferSize);
|
|
|
|
HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
|
|
HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};
|
|
|
|
inline MixerFunc SelectMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Mix_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return Mix_<SSETag>;
|
|
#endif
|
|
return Mix_<CTag>;
|
|
}
|
|
|
|
inline HrtfMixerFunc SelectHrtfMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixHrtf_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixHrtf_<SSETag>;
|
|
#endif
|
|
return MixHrtf_<CTag>;
|
|
}
|
|
|
|
inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixHrtfBlend_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixHrtfBlend_<SSETag>;
|
|
#endif
|
|
return MixHrtfBlend_<CTag>;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
void aluInitMixer()
|
|
{
|
|
if(auto resopt = ConfigValueStr(nullptr, nullptr, "resampler"))
|
|
{
|
|
struct ResamplerEntry {
|
|
const char name[16];
|
|
const Resampler resampler;
|
|
};
|
|
constexpr ResamplerEntry ResamplerList[]{
|
|
{ "none", Resampler::Point },
|
|
{ "point", Resampler::Point },
|
|
{ "cubic", Resampler::Cubic },
|
|
{ "bsinc12", Resampler::BSinc12 },
|
|
{ "fast_bsinc12", Resampler::FastBSinc12 },
|
|
{ "bsinc24", Resampler::BSinc24 },
|
|
{ "fast_bsinc24", Resampler::FastBSinc24 },
|
|
};
|
|
|
|
const char *str{resopt->c_str()};
|
|
if(al::strcasecmp(str, "bsinc") == 0)
|
|
{
|
|
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
|
|
str = "bsinc12";
|
|
}
|
|
else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
|
|
{
|
|
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
|
|
str = "cubic";
|
|
}
|
|
|
|
auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
|
|
[str](const ResamplerEntry &entry) -> bool
|
|
{ return al::strcasecmp(str, entry.name) == 0; });
|
|
if(iter == std::end(ResamplerList))
|
|
ERR("Invalid resampler: %s\n", str);
|
|
else
|
|
ResamplerDefault = iter->resampler;
|
|
}
|
|
|
|
MixSamples = SelectMixer();
|
|
MixHrtfBlendSamples = SelectHrtfBlendMixer();
|
|
MixHrtfSamples = SelectHrtfMixer();
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/* A quick'n'dirty lookup table to decode a muLaw-encoded byte sample into a
|
|
* signed 16-bit sample */
|
|
constexpr int16_t muLawDecompressionTable[256] = {
|
|
-32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956,
|
|
-23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764,
|
|
-15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412,
|
|
-11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316,
|
|
-7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140,
|
|
-5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092,
|
|
-3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004,
|
|
-2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980,
|
|
-1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436,
|
|
-1372, -1308, -1244, -1180, -1116, -1052, -988, -924,
|
|
-876, -844, -812, -780, -748, -716, -684, -652,
|
|
-620, -588, -556, -524, -492, -460, -428, -396,
|
|
-372, -356, -340, -324, -308, -292, -276, -260,
|
|
-244, -228, -212, -196, -180, -164, -148, -132,
|
|
-120, -112, -104, -96, -88, -80, -72, -64,
|
|
-56, -48, -40, -32, -24, -16, -8, 0,
|
|
32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956,
|
|
23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764,
|
|
15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412,
|
|
11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316,
|
|
7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140,
|
|
5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092,
|
|
3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004,
|
|
2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980,
|
|
1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436,
|
|
1372, 1308, 1244, 1180, 1116, 1052, 988, 924,
|
|
876, 844, 812, 780, 748, 716, 684, 652,
|
|
620, 588, 556, 524, 492, 460, 428, 396,
|
|
372, 356, 340, 324, 308, 292, 276, 260,
|
|
244, 228, 212, 196, 180, 164, 148, 132,
|
|
120, 112, 104, 96, 88, 80, 72, 64,
|
|
56, 48, 40, 32, 24, 16, 8, 0
|
|
};
|
|
|
|
/* A quick'n'dirty lookup table to decode an aLaw-encoded byte sample into a
|
|
* signed 16-bit sample */
|
|
constexpr int16_t aLawDecompressionTable[256] = {
|
|
-5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736,
|
|
-7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784,
|
|
-2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368,
|
|
-3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392,
|
|
-22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944,
|
|
-30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136,
|
|
-11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472,
|
|
-15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568,
|
|
-344, -328, -376, -360, -280, -264, -312, -296,
|
|
-472, -456, -504, -488, -408, -392, -440, -424,
|
|
-88, -72, -120, -104, -24, -8, -56, -40,
|
|
-216, -200, -248, -232, -152, -136, -184, -168,
|
|
-1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184,
|
|
-1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696,
|
|
-688, -656, -752, -720, -560, -528, -624, -592,
|
|
-944, -912, -1008, -976, -816, -784, -880, -848,
|
|
5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736,
|
|
7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784,
|
|
2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368,
|
|
3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392,
|
|
22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944,
|
|
30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136,
|
|
11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472,
|
|
15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568,
|
|
344, 328, 376, 360, 280, 264, 312, 296,
|
|
472, 456, 504, 488, 408, 392, 440, 424,
|
|
88, 72, 120, 104, 24, 8, 56, 40,
|
|
216, 200, 248, 232, 152, 136, 184, 168,
|
|
1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184,
|
|
1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696,
|
|
688, 656, 752, 720, 560, 528, 624, 592,
|
|
944, 912, 1008, 976, 816, 784, 880, 848
|
|
};
|
|
|
|
template<FmtType T>
|
|
struct FmtTypeTraits { };
|
|
|
|
template<>
|
|
struct FmtTypeTraits<FmtUByte> {
|
|
using Type = uint8_t;
|
|
static constexpr inline float to_float(const Type val) noexcept
|
|
{ return val*(1.0f/128.0f) - 1.0f; }
|
|
};
|
|
template<>
|
|
struct FmtTypeTraits<FmtShort> {
|
|
using Type = int16_t;
|
|
static constexpr inline float to_float(const Type val) noexcept { return val*(1.0f/32768.0f); }
|
|
};
|
|
template<>
|
|
struct FmtTypeTraits<FmtFloat> {
|
|
using Type = float;
|
|
static constexpr inline float to_float(const Type val) noexcept { return val; }
|
|
};
|
|
template<>
|
|
struct FmtTypeTraits<FmtDouble> {
|
|
using Type = double;
|
|
static constexpr inline float to_float(const Type val) noexcept
|
|
{ return static_cast<float>(val); }
|
|
};
|
|
template<>
|
|
struct FmtTypeTraits<FmtMulaw> {
|
|
using Type = uint8_t;
|
|
static constexpr inline float to_float(const Type val) noexcept
|
|
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
|
|
};
|
|
template<>
|
|
struct FmtTypeTraits<FmtAlaw> {
|
|
using Type = uint8_t;
|
|
static constexpr inline float to_float(const Type val) noexcept
|
|
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
|
|
};
|
|
|
|
|
|
void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
|
|
{
|
|
RingBuffer *ring{context->mAsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len < 1) return;
|
|
|
|
AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}};
|
|
evt->u.srcstate.id = id;
|
|
evt->u.srcstate.state = AL_STOPPED;
|
|
|
|
ring->writeAdvance(1);
|
|
}
|
|
|
|
|
|
const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
|
|
const al::span<const float> src, int type)
|
|
{
|
|
switch(type)
|
|
{
|
|
case AF_None:
|
|
lpfilter.clear();
|
|
hpfilter.clear();
|
|
break;
|
|
|
|
case AF_LowPass:
|
|
lpfilter.process(src, dst);
|
|
hpfilter.clear();
|
|
return dst;
|
|
case AF_HighPass:
|
|
lpfilter.clear();
|
|
hpfilter.process(src, dst);
|
|
return dst;
|
|
|
|
case AF_BandPass:
|
|
DualBiquad{lpfilter, hpfilter}.process(src, dst);
|
|
return dst;
|
|
}
|
|
return src.data();
|
|
}
|
|
|
|
|
|
template<FmtType T>
|
|
inline void LoadSampleArray(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
|
|
const size_t samples) noexcept
|
|
{
|
|
using SampleType = typename FmtTypeTraits<T>::Type;
|
|
|
|
const SampleType *RESTRICT ssrc{reinterpret_cast<const SampleType*>(src)};
|
|
for(size_t i{0u};i < samples;i++)
|
|
dst[i] = FmtTypeTraits<T>::to_float(ssrc[i*srcstep]);
|
|
}
|
|
|
|
void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
|
|
const size_t samples) noexcept
|
|
{
|
|
#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
|
|
switch(srctype)
|
|
{
|
|
HANDLE_FMT(FmtUByte);
|
|
HANDLE_FMT(FmtShort);
|
|
HANDLE_FMT(FmtFloat);
|
|
HANDLE_FMT(FmtDouble);
|
|
HANDLE_FMT(FmtMulaw);
|
|
HANDLE_FMT(FmtAlaw);
|
|
}
|
|
#undef HANDLE_FMT
|
|
}
|
|
|
|
float *LoadBufferStatic(ALbufferlistitem *BufferListItem, ALbufferlistitem *&BufferLoopItem,
|
|
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
|
|
al::span<float> SrcBuffer)
|
|
{
|
|
const ALbuffer *Buffer{BufferListItem->mBuffer};
|
|
const ALuint LoopStart{Buffer->LoopStart};
|
|
const ALuint LoopEnd{Buffer->LoopEnd};
|
|
ASSUME(LoopEnd > LoopStart);
|
|
|
|
/* If current pos is beyond the loop range, do not loop */
|
|
if(!BufferLoopItem || DataPosInt >= LoopEnd)
|
|
{
|
|
BufferLoopItem = nullptr;
|
|
|
|
/* Load what's left to play from the buffer */
|
|
const size_t DataRem{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
|
|
|
|
const al::byte *Data{Buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
|
|
SrcBuffer = SrcBuffer.subspan(DataRem);
|
|
}
|
|
else
|
|
{
|
|
/* Load what's left of this loop iteration */
|
|
const size_t DataRem{minz(SrcBuffer.size(), LoopEnd-DataPosInt)};
|
|
|
|
const al::byte *Data{Buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
|
|
SrcBuffer = SrcBuffer.subspan(DataRem);
|
|
|
|
/* Load any repeats of the loop we can to fill the buffer. */
|
|
const auto LoopSize = static_cast<size_t>(LoopEnd - LoopStart);
|
|
while(!SrcBuffer.empty())
|
|
{
|
|
const size_t DataSize{minz(SrcBuffer.size(), LoopSize)};
|
|
|
|
Data = Buffer->mData.data() + (LoopStart*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
|
|
SrcBuffer = SrcBuffer.subspan(DataSize);
|
|
}
|
|
}
|
|
return SrcBuffer.begin();
|
|
}
|
|
|
|
float *LoadBufferCallback(ALbufferlistitem *BufferListItem, const size_t NumChannels,
|
|
const size_t SampleSize, const size_t chan, size_t NumCallbackSamples,
|
|
al::span<float> SrcBuffer)
|
|
{
|
|
const ALbuffer *Buffer{BufferListItem->mBuffer};
|
|
|
|
/* Load what's left to play from the buffer */
|
|
const size_t DataRem{minz(SrcBuffer.size(), NumCallbackSamples)};
|
|
|
|
const al::byte *Data{Buffer->mData.data() + chan*SampleSize};
|
|
|
|
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
|
|
SrcBuffer = SrcBuffer.subspan(DataRem);
|
|
|
|
return SrcBuffer.begin();
|
|
}
|
|
|
|
float *LoadBufferQueue(ALbufferlistitem *BufferListItem, ALbufferlistitem *BufferLoopItem,
|
|
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
|
|
al::span<float> SrcBuffer)
|
|
{
|
|
/* Crawl the buffer queue to fill in the temp buffer */
|
|
while(BufferListItem && !SrcBuffer.empty())
|
|
{
|
|
ALbuffer *Buffer{BufferListItem->mBuffer};
|
|
if(!(Buffer && DataPosInt < Buffer->SampleLen))
|
|
{
|
|
if(Buffer) DataPosInt -= Buffer->SampleLen;
|
|
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
|
|
if(!BufferListItem) BufferListItem = BufferLoopItem;
|
|
continue;
|
|
}
|
|
|
|
const size_t DataSize{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
|
|
|
|
const al::byte *Data{Buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
|
|
SrcBuffer = SrcBuffer.subspan(DataSize);
|
|
if(SrcBuffer.empty()) break;
|
|
|
|
DataPosInt = 0;
|
|
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
|
|
if(!BufferListItem) BufferListItem = BufferLoopItem;
|
|
}
|
|
|
|
return SrcBuffer.begin();
|
|
}
|
|
|
|
|
|
void DoHrtfMix(const float *samples, const ALuint DstBufferSize, DirectParams &parms,
|
|
const float TargetGain, const ALuint Counter, ALuint OutPos, const ALuint IrSize,
|
|
ALCdevice *Device)
|
|
{
|
|
auto &HrtfSamples = Device->HrtfSourceData;
|
|
auto &AccumSamples = Device->HrtfAccumData;
|
|
|
|
/* Copy the HRTF history and new input samples into a temp buffer. */
|
|
auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
|
|
std::begin(HrtfSamples));
|
|
std::copy_n(samples, DstBufferSize, src_iter);
|
|
/* Copy the last used samples back into the history buffer for later. */
|
|
std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
|
|
parms.Hrtf.History.begin());
|
|
|
|
/* If fading, the old gain is not silence, and this is the first mixing
|
|
* pass, fade between the IRs.
|
|
*/
|
|
ALuint fademix{0u};
|
|
if(Counter && parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD && OutPos == 0)
|
|
{
|
|
fademix = minu(DstBufferSize, 128);
|
|
|
|
float gain{TargetGain};
|
|
|
|
/* The new coefficients need to fade in completely since they're
|
|
* replacing the old ones. To keep the gain fading consistent,
|
|
* interpolate between the old and new target gains given how much of
|
|
* the fade time this mix handles.
|
|
*/
|
|
if LIKELY(Counter > fademix)
|
|
{
|
|
const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
|
|
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
|
|
}
|
|
MixHrtfFilter hrtfparams;
|
|
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
|
|
hrtfparams.Delay = parms.Hrtf.Target.Delay;
|
|
hrtfparams.Gain = 0.0f;
|
|
hrtfparams.GainStep = gain / static_cast<float>(fademix);
|
|
|
|
MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
|
|
fademix);
|
|
/* Update the old parameters with the result. */
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
parms.Hrtf.Old.Gain = gain;
|
|
OutPos += fademix;
|
|
}
|
|
|
|
if LIKELY(fademix < DstBufferSize)
|
|
{
|
|
const ALuint todo{DstBufferSize - fademix};
|
|
float gain{TargetGain};
|
|
|
|
/* Interpolate the target gain if the gain fading lasts longer than
|
|
* this mix.
|
|
*/
|
|
if(Counter > DstBufferSize)
|
|
{
|
|
const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
|
|
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
|
|
}
|
|
|
|
MixHrtfFilter hrtfparams;
|
|
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
|
|
hrtfparams.Delay = parms.Hrtf.Target.Delay;
|
|
hrtfparams.Gain = parms.Hrtf.Old.Gain;
|
|
hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo);
|
|
MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);
|
|
/* Store the now-current gain for next time. */
|
|
parms.Hrtf.Old.Gain = gain;
|
|
}
|
|
}
|
|
|
|
void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
|
|
const float *TargetGains, const ALuint Counter, const ALuint OutPos, ALCdevice *Device)
|
|
{
|
|
using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
|
|
static constexpr FilterProc NfcProcess[MAX_AMBI_ORDER+1]{
|
|
nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};
|
|
|
|
float *CurrentGains{parms.Gains.Current.data()};
|
|
MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
|
|
++OutBuffer;
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
|
|
size_t order{1};
|
|
while(const size_t chancount{Device->NumChannelsPerOrder[order]})
|
|
{
|
|
(parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
|
|
MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
|
|
OutBuffer += chancount;
|
|
CurrentGains += chancount;
|
|
TargetGains += chancount;
|
|
if(++order == MAX_AMBI_ORDER+1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void Voice::mix(const State vstate, ALCcontext *Context, const ALuint SamplesToDo)
|
|
{
|
|
static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
/* Get voice info */
|
|
ALuint DataPosInt{mPosition.load(std::memory_order_relaxed)};
|
|
ALuint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
|
|
ALbufferlistitem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
|
|
ALbufferlistitem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
|
|
const ALuint SampleSize{mSampleSize};
|
|
const ALuint increment{mStep};
|
|
if UNLIKELY(increment < 1)
|
|
{
|
|
/* If the voice is supposed to be stopping but can't be mixed, just
|
|
* stop it before bailing.
|
|
*/
|
|
if(vstate == Stopping)
|
|
mPlayState.store(Stopped, std::memory_order_release);
|
|
return;
|
|
}
|
|
|
|
ASSUME(SampleSize > 0);
|
|
|
|
const size_t FrameSize{mChans.size() * SampleSize};
|
|
ASSUME(FrameSize > 0);
|
|
|
|
ALCdevice *Device{Context->mDevice.get()};
|
|
const ALuint NumSends{Device->NumAuxSends};
|
|
const ALuint IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0};
|
|
|
|
ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ?
|
|
Resample_<CopyTag,CTag> : mResampler};
|
|
|
|
ALuint Counter{(mFlags&VOICE_IS_FADING) ? SamplesToDo : 0};
|
|
if(!Counter)
|
|
{
|
|
/* No fading, just overwrite the old/current params. */
|
|
for(auto &chandata : mChans)
|
|
{
|
|
{
|
|
DirectParams &parms = chandata.mDryParams;
|
|
if(!(mFlags&VOICE_HAS_HRTF))
|
|
parms.Gains.Current = parms.Gains.Target;
|
|
else
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
}
|
|
for(ALuint send{0};send < NumSends;++send)
|
|
{
|
|
if(mSend[send].Buffer.empty())
|
|
continue;
|
|
|
|
SendParams &parms = chandata.mWetParams[send];
|
|
parms.Gains.Current = parms.Gains.Target;
|
|
}
|
|
}
|
|
}
|
|
else if((mFlags&VOICE_HAS_HRTF))
|
|
{
|
|
for(auto &chandata : mChans)
|
|
{
|
|
DirectParams &parms = chandata.mDryParams;
|
|
if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
|
|
{
|
|
/* The old HRTF params are silent, so overwrite the old
|
|
* coefficients with the new, and reset the old gain to 0. The
|
|
* future mix will then fade from silence.
|
|
*/
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
parms.Hrtf.Old.Gain = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
ALuint buffers_done{0u};
|
|
ALuint OutPos{0u};
|
|
do {
|
|
/* Figure out how many buffer samples will be needed */
|
|
ALuint DstBufferSize{SamplesToDo - OutPos};
|
|
|
|
/* Calculate the last written dst sample pos. */
|
|
uint64_t DataSize64{DstBufferSize - 1};
|
|
/* Calculate the last read src sample pos. */
|
|
DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS;
|
|
/* +1 to get the src sample count, include padding. */
|
|
DataSize64 += 1 + MAX_RESAMPLER_PADDING;
|
|
|
|
auto SrcBufferSize = static_cast<ALuint>(
|
|
minu64(DataSize64, BUFFERSIZE + MAX_RESAMPLER_PADDING + 1));
|
|
if(SrcBufferSize > BUFFERSIZE + MAX_RESAMPLER_PADDING)
|
|
{
|
|
SrcBufferSize = BUFFERSIZE + MAX_RESAMPLER_PADDING;
|
|
/* If the source buffer got saturated, we can't fill the desired
|
|
* dst size. Figure out how many samples we can actually mix from
|
|
* this.
|
|
*/
|
|
DataSize64 = SrcBufferSize - MAX_RESAMPLER_PADDING;
|
|
DataSize64 = ((DataSize64<<FRACTIONBITS) - DataPosFrac + increment-1) / increment;
|
|
if(DataSize64 < DstBufferSize)
|
|
{
|
|
/* Some mixers require being 16-byte aligned, so also limit to
|
|
* a multiple of 4 samples to maintain alignment.
|
|
*/
|
|
DstBufferSize = static_cast<ALuint>(DataSize64) & ~3u;
|
|
}
|
|
}
|
|
|
|
if((mFlags&(VOICE_IS_CALLBACK|VOICE_CALLBACK_STOPPED)) == VOICE_IS_CALLBACK
|
|
&& BufferListItem)
|
|
{
|
|
ALbuffer *buffer{BufferListItem->mBuffer};
|
|
|
|
/* Exclude resampler pre-padding from the needed size. */
|
|
const ALuint toLoad{SrcBufferSize - (MAX_RESAMPLER_PADDING>>1)};
|
|
if(toLoad > mNumCallbackSamples)
|
|
{
|
|
const size_t byteOffset{mNumCallbackSamples*FrameSize};
|
|
const size_t needBytes{toLoad*FrameSize - byteOffset};
|
|
|
|
const ALsizei gotBytes{buffer->Callback(buffer->UserData,
|
|
&buffer->mData[byteOffset], static_cast<ALsizei>(needBytes))};
|
|
if(gotBytes < 1)
|
|
mFlags |= VOICE_CALLBACK_STOPPED;
|
|
else if(static_cast<ALuint>(gotBytes) < needBytes)
|
|
{
|
|
mFlags |= VOICE_CALLBACK_STOPPED;
|
|
mNumCallbackSamples += static_cast<ALuint>(static_cast<ALuint>(gotBytes) /
|
|
FrameSize);
|
|
}
|
|
else
|
|
mNumCallbackSamples = toLoad;
|
|
}
|
|
}
|
|
|
|
ASSUME(DstBufferSize > 0);
|
|
for(auto &chandata : mChans)
|
|
{
|
|
const size_t num_chans{mChans.size()};
|
|
const auto chan = static_cast<size_t>(std::distance(mChans.data(),
|
|
std::addressof(chandata)));
|
|
const al::span<float> SrcData{Device->SourceData, SrcBufferSize};
|
|
|
|
/* Load the previous samples into the source data first, then load
|
|
* what we can from the buffer queue.
|
|
*/
|
|
auto srciter = std::copy_n(chandata.mPrevSamples.begin(), MAX_RESAMPLER_PADDING>>1,
|
|
SrcData.begin());
|
|
|
|
if UNLIKELY(!BufferListItem)
|
|
srciter = std::copy(chandata.mPrevSamples.begin()+(MAX_RESAMPLER_PADDING>>1),
|
|
chandata.mPrevSamples.end(), srciter);
|
|
else if((mFlags&VOICE_IS_STATIC))
|
|
srciter = LoadBufferStatic(BufferListItem, BufferLoopItem, num_chans,
|
|
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
|
|
else if((mFlags&VOICE_IS_CALLBACK))
|
|
srciter = LoadBufferCallback(BufferListItem, num_chans, SampleSize, chan,
|
|
mNumCallbackSamples, {srciter, SrcData.end()});
|
|
else
|
|
srciter = LoadBufferQueue(BufferListItem, BufferLoopItem, num_chans,
|
|
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
|
|
|
|
if UNLIKELY(srciter != SrcData.end())
|
|
{
|
|
/* If the source buffer wasn't filled, copy the last sample for
|
|
* the remaining buffer. Ideally it should have ended with
|
|
* silence, but if not the gain fading should help avoid clicks
|
|
* from sudden amplitude changes.
|
|
*/
|
|
const float sample{*(srciter-1)};
|
|
std::fill(srciter, SrcData.end(), sample);
|
|
}
|
|
|
|
/* Store the last source samples used for next time. */
|
|
std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
|
|
chandata.mPrevSamples.size(), chandata.mPrevSamples.begin());
|
|
|
|
/* Resample, then apply ambisonic upsampling as needed. */
|
|
const float *ResampledData{Resample(&mResampleState,
|
|
&SrcData[MAX_RESAMPLER_PADDING>>1], DataPosFrac, increment,
|
|
{Device->ResampledData, DstBufferSize})};
|
|
if((mFlags&VOICE_IS_AMBISONIC))
|
|
{
|
|
const float hfscale{chandata.mAmbiScale};
|
|
/* Beware the evil const_cast. It's safe since it's pointing to
|
|
* either SourceData or ResampledData (both non-const), but the
|
|
* resample method takes the source as const float* and may
|
|
* return it without copying to output, making it currently
|
|
* unavoidable.
|
|
*/
|
|
const al::span<float> samples{const_cast<float*>(ResampledData), DstBufferSize};
|
|
chandata.mAmbiSplitter.applyHfScale(samples, hfscale);
|
|
}
|
|
|
|
/* Now filter and mix to the appropriate outputs. */
|
|
float (&FilterBuf)[BUFFERSIZE] = Device->FilteredData;
|
|
{
|
|
DirectParams &parms = chandata.mDryParams;
|
|
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf,
|
|
{ResampledData, DstBufferSize}, mDirect.FilterType)};
|
|
|
|
if((mFlags&VOICE_HAS_HRTF))
|
|
{
|
|
const float TargetGain{UNLIKELY(vstate == Stopping) ? 0.0f :
|
|
parms.Hrtf.Target.Gain};
|
|
DoHrtfMix(samples, DstBufferSize, parms, TargetGain, Counter, OutPos, IrSize,
|
|
Device);
|
|
}
|
|
else if((mFlags&VOICE_HAS_NFC))
|
|
{
|
|
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
|
|
: parms.Gains.Target.data()};
|
|
DoNfcMix({samples, DstBufferSize}, mDirect.Buffer.data(), parms, TargetGains,
|
|
Counter, OutPos, Device);
|
|
}
|
|
else
|
|
{
|
|
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
|
|
: parms.Gains.Target.data()};
|
|
MixSamples({samples, DstBufferSize}, mDirect.Buffer,
|
|
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
|
|
}
|
|
}
|
|
|
|
for(ALuint send{0};send < NumSends;++send)
|
|
{
|
|
if(mSend[send].Buffer.empty())
|
|
continue;
|
|
|
|
SendParams &parms = chandata.mWetParams[send];
|
|
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf,
|
|
{ResampledData, DstBufferSize}, mSend[send].FilterType)};
|
|
|
|
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
|
|
: parms.Gains.Target.data()};
|
|
MixSamples({samples, DstBufferSize}, mSend[send].Buffer,
|
|
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
|
|
}
|
|
}
|
|
/* Update positions */
|
|
DataPosFrac += increment*DstBufferSize;
|
|
const ALuint SrcSamplesDone{DataPosFrac>>FRACTIONBITS};
|
|
DataPosInt += SrcSamplesDone;
|
|
DataPosFrac &= FRACTIONMASK;
|
|
|
|
OutPos += DstBufferSize;
|
|
Counter = maxu(DstBufferSize, Counter) - DstBufferSize;
|
|
|
|
if UNLIKELY(!BufferListItem)
|
|
{
|
|
/* Do nothing extra when there's no buffers. */
|
|
}
|
|
else if((mFlags&VOICE_IS_STATIC))
|
|
{
|
|
if(BufferLoopItem)
|
|
{
|
|
/* Handle looping static source */
|
|
const ALbuffer *Buffer{BufferListItem->mBuffer};
|
|
const ALuint LoopStart{Buffer->LoopStart};
|
|
const ALuint LoopEnd{Buffer->LoopEnd};
|
|
if(DataPosInt >= LoopEnd)
|
|
{
|
|
assert(LoopEnd > LoopStart);
|
|
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Handle non-looping static source */
|
|
if(DataPosInt >= BufferListItem->mSampleLen)
|
|
{
|
|
BufferListItem = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if((mFlags&VOICE_IS_CALLBACK))
|
|
{
|
|
ALbuffer *buffer{BufferListItem->mBuffer};
|
|
if(SrcSamplesDone < mNumCallbackSamples)
|
|
{
|
|
const size_t byteOffset{SrcSamplesDone*FrameSize};
|
|
const size_t byteEnd{mNumCallbackSamples*FrameSize};
|
|
std::copy(buffer->mData.data()+byteOffset, buffer->mData.data()+byteEnd,
|
|
buffer->mData.data());
|
|
mNumCallbackSamples -= SrcSamplesDone;
|
|
}
|
|
else
|
|
{
|
|
BufferListItem = nullptr;
|
|
mNumCallbackSamples = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Handle streaming source */
|
|
do {
|
|
if(BufferListItem->mSampleLen > DataPosInt)
|
|
break;
|
|
|
|
DataPosInt -= BufferListItem->mSampleLen;
|
|
|
|
++buffers_done;
|
|
BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
|
|
if(!BufferListItem) BufferListItem = BufferLoopItem;
|
|
} while(BufferListItem);
|
|
}
|
|
} while(OutPos < SamplesToDo);
|
|
|
|
mFlags |= VOICE_IS_FADING;
|
|
|
|
/* Don't update positions and buffers if we were stopping. */
|
|
if UNLIKELY(vstate == Stopping)
|
|
{
|
|
mPlayState.store(Stopped, std::memory_order_release);
|
|
return;
|
|
}
|
|
|
|
/* Capture the source ID in case it's reset for stopping. */
|
|
const ALuint SourceID{mSourceID.load(std::memory_order_relaxed)};
|
|
|
|
/* Update voice info */
|
|
mPosition.store(DataPosInt, std::memory_order_relaxed);
|
|
mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
|
|
mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
|
|
if(!BufferListItem)
|
|
{
|
|
mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
mSourceID.store(0u, std::memory_order_relaxed);
|
|
}
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
|
|
/* Send any events now, after the position/buffer info was updated. */
|
|
const ALbitfieldSOFT enabledevt{Context->mEnabledEvts.load(std::memory_order_acquire)};
|
|
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
|
|
{
|
|
RingBuffer *ring{Context->mAsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len > 0)
|
|
{
|
|
AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}};
|
|
evt->u.bufcomp.id = SourceID;
|
|
evt->u.bufcomp.count = buffers_done;
|
|
ring->writeAdvance(1);
|
|
}
|
|
}
|
|
|
|
if(!BufferListItem)
|
|
{
|
|
/* If the voice just ended, set it to Stopping so the next render
|
|
* ensures any residual noise fades to 0 amplitude.
|
|
*/
|
|
mPlayState.store(Stopping, std::memory_order_release);
|
|
if((enabledevt&EventType_SourceStateChange))
|
|
SendSourceStoppedEvent(Context, SourceID);
|
|
}
|
|
}
|