openal-soft/Alc/effects/modulator.cpp
2018-11-17 01:53:39 -08:00

311 lines
11 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "filters/defs.h"
#define MAX_UPDATE_SAMPLES 128
struct ALmodulatorState final : public ALeffectState {
void (*GetSamples)(ALfloat*RESTRICT, ALsizei, const ALsizei, ALsizei);
ALsizei index;
ALsizei step;
struct {
BiquadFilter Filter;
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
} Chans[MAX_EFFECT_CHANNELS];
};
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state);
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *device);
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALmodulatorState)
DEFINE_ALEFFECTSTATE_VTABLE(ALmodulatorState);
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
static inline ALfloat Sin(ALsizei index)
{
return sinf((ALfloat)index * (F_TAU / WAVEFORM_FRACONE));
}
static inline ALfloat Saw(ALsizei index)
{
return (ALfloat)index*(2.0f/WAVEFORM_FRACONE) - 1.0f;
}
static inline ALfloat Square(ALsizei index)
{
return (ALfloat)(((index>>(WAVEFORM_FRACBITS-2))&2) - 1);
}
static inline ALfloat One(ALsizei UNUSED(index))
{
return 1.0f;
}
#define DECL_TEMPLATE(func) \
static void Modulate##func(ALfloat *RESTRICT dst, ALsizei index, \
const ALsizei step, ALsizei todo) \
{ \
ALsizei i; \
for(i = 0;i < todo;i++) \
{ \
index += step; \
index &= WAVEFORM_FRACMASK; \
dst[i] = func(index); \
} \
}
DECL_TEMPLATE(Sin)
DECL_TEMPLATE(Saw)
DECL_TEMPLATE(Square)
DECL_TEMPLATE(One)
#undef DECL_TEMPLATE
static void ALmodulatorState_Construct(ALmodulatorState *state)
{
new (state) ALmodulatorState{};
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALmodulatorState, ALeffectState, state);
state->index = 0;
state->step = 1;
}
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
state->~ALmodulatorState();
}
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *state, ALCdevice *UNUSED(device))
{
ALsizei i, j;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
BiquadFilter_clear(&state->Chans[i].Filter);
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
state->Chans[i].CurrentGains[j] = 0.0f;
}
return AL_TRUE;
}
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
{
const ALCdevice *device = context->Device;
ALfloat f0norm;
ALsizei i;
state->step = fastf2i(props->Modulator.Frequency / (ALfloat)device->Frequency *
WAVEFORM_FRACONE);
state->step = clampi(state->step, 0, WAVEFORM_FRACONE-1);
if(state->step == 0)
state->GetSamples = ModulateOne;
else if(props->Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
state->GetSamples = ModulateSin;
else if(props->Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
state->GetSamples = ModulateSaw;
else /*if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/
state->GetSamples = ModulateSquare;
f0norm = props->Modulator.HighPassCutoff / (ALfloat)device->Frequency;
f0norm = clampf(f0norm, 1.0f/512.0f, 0.49f);
/* Bandwidth value is constant in octaves. */
BiquadFilter_setParams(&state->Chans[0].Filter, BiquadType_HighPass, 1.0f,
f0norm, calc_rcpQ_from_bandwidth(f0norm, 0.75f));
for(i = 1;i < MAX_EFFECT_CHANNELS;i++)
BiquadFilter_copyParams(&state->Chans[i].Filter, &state->Chans[0].Filter);
STATIC_CAST(ALeffectState,state)->OutBuffer = device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputePanGains(&device->FOAOut, IdentityMatrixf.m[i], slot->Params.Gain,
state->Chans[i].TargetGains);
}
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALsizei SamplesToDo, const ALfloat (*RESTRICT SamplesIn)[BUFFERSIZE], ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
const ALsizei step = state->step;
ALsizei base;
for(base = 0;base < SamplesToDo;)
{
alignas(16) ALfloat modsamples[MAX_UPDATE_SAMPLES];
ALsizei td = mini(MAX_UPDATE_SAMPLES, SamplesToDo-base);
ALsizei c, i;
state->GetSamples(modsamples, state->index, step, td);
state->index += (step*td) & WAVEFORM_FRACMASK;
state->index &= WAVEFORM_FRACMASK;
for(c = 0;c < MAX_EFFECT_CHANNELS;c++)
{
alignas(16) ALfloat temps[MAX_UPDATE_SAMPLES];
BiquadFilter_process(&state->Chans[c].Filter, temps, &SamplesIn[c][base], td);
for(i = 0;i < td;i++)
temps[i] *= modsamples[i];
MixSamples(temps, NumChannels, SamplesOut, state->Chans[c].CurrentGains,
state->Chans[c].TargetGains, SamplesToDo-base, base, td);
}
base += td;
}
}
struct ModulatorStateFactory final : public EffectStateFactory {
ModulatorStateFactory() noexcept;
};
static ALeffectState *ModulatorStateFactory_create(ModulatorStateFactory *UNUSED(factory))
{
ALmodulatorState *state;
NEW_OBJ0(state, ALmodulatorState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_EFFECTSTATEFACTORY_VTABLE(ModulatorStateFactory);
ModulatorStateFactory::ModulatorStateFactory() noexcept
: EffectStateFactory{GET_VTABLE2(ModulatorStateFactory, EffectStateFactory)}
{ }
EffectStateFactory *ModulatorStateFactory_getFactory(void)
{
static ModulatorStateFactory ModulatorFactory{};
return STATIC_CAST(EffectStateFactory, &ModulatorFactory);
}
void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator frequency out of range");
props->Modulator.Frequency = val;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Modulator high-pass cutoff out of range");
props->Modulator.HighPassCutoff = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param);
}
}
void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{ ALmodulator_setParamf(effect, context, param, vals[0]); }
void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
ALmodulator_setParamf(effect, context, param, (ALfloat)val);
break;
case AL_RING_MODULATOR_WAVEFORM:
if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM))
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid modulator waveform");
props->Modulator.Waveform = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param);
}
}
void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{ ALmodulator_setParami(effect, context, param, vals[0]); }
void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = (ALint)props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = (ALint)props->Modulator.HighPassCutoff;
break;
case AL_RING_MODULATOR_WAVEFORM:
*val = props->Modulator.Waveform;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid modulator integer property 0x%04x", param);
}
}
void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{ ALmodulator_getParami(effect, context, param, vals); }
void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = props->Modulator.HighPassCutoff;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid modulator float property 0x%04x", param);
}
}
void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{ ALmodulator_getParamf(effect, context, param, vals); }
DEFINE_ALEFFECT_VTABLE(ALmodulator);