openal-soft/Alc/effects/modulator.c
Chris Robinson a6c70992b0 More directly map coefficients for ambisonic mixing buffers
Instead of looping over all the coefficients for each channel with multiplies,
when we know only one will have a non-0 factor for ambisonic mixing buffers,
just index the one with a non-0 factor.
2016-04-15 22:05:47 -07:00

309 lines
9.9 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
typedef struct ALmodulatorState {
DERIVE_FROM_TYPE(ALeffectState);
void (*Process)(ALfloat*, const ALfloat*, ALuint, const ALuint, ALuint);
ALuint index;
ALuint step;
ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS];
ALfilterState Filter[MAX_EFFECT_CHANNELS];
} ALmodulatorState;
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
static inline ALfloat Sin(ALuint index)
{
return sinf(index*(F_TAU/WAVEFORM_FRACONE) - F_PI)*0.5f + 0.5f;
}
static inline ALfloat Saw(ALuint index)
{
return (ALfloat)index / WAVEFORM_FRACONE;
}
static inline ALfloat Square(ALuint index)
{
return (ALfloat)((index >> (WAVEFORM_FRACBITS - 1)) & 1);
}
#define DECL_TEMPLATE(func) \
static void Modulate##func(ALfloat *restrict dst, const ALfloat *restrict src,\
ALuint index, const ALuint step, ALuint todo) \
{ \
ALuint i; \
for(i = 0;i < todo;i++) \
{ \
index += step; \
index &= WAVEFORM_FRACMASK; \
dst[i] = src[i] * func(index); \
} \
}
DECL_TEMPLATE(Sin)
DECL_TEMPLATE(Saw)
DECL_TEMPLATE(Square)
#undef DECL_TEMPLATE
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *UNUSED(state))
{
}
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *UNUSED(state), ALCdevice *UNUSED(device))
{
return AL_TRUE;
}
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCdevice *Device, const ALeffectslot *Slot)
{
aluMatrixf matrix;
ALfloat cw, a;
ALuint i;
if(Slot->EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
state->Process = ModulateSin;
else if(Slot->EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
state->Process = ModulateSaw;
else /*if(Slot->EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/
state->Process = ModulateSquare;
state->step = fastf2u(Slot->EffectProps.Modulator.Frequency*WAVEFORM_FRACONE /
Device->Frequency);
if(state->step == 0) state->step = 1;
/* Custom filter coeffs, which match the old version instead of a low-shelf. */
cw = cosf(F_TAU * Slot->EffectProps.Modulator.HighPassCutoff / Device->Frequency);
a = (2.0f-cw) - sqrtf(powf(2.0f-cw, 2.0f) - 1.0f);
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
state->Filter[i].a1 = -a;
state->Filter[i].a2 = 0.0f;
state->Filter[i].b1 = -a;
state->Filter[i].b2 = 0.0f;
state->Filter[i].input_gain = a;
state->Filter[i].process = ALfilterState_processC;
}
aluMatrixfSet(&matrix,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
STATIC_CAST(ALeffectState,state)->OutBuffer = Device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = Device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputeFirstOrderGains(Device->FOAOut, matrix.m[i], Slot->Gain,
state->Gain[i]);
}
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
const ALuint step = state->step;
ALuint index = state->index;
ALuint base;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[2][128];
ALuint td = minu(128, SamplesToDo-base);
ALuint i, j, k;
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
{
ALfilterState_process(&state->Filter[j], temps[0], &SamplesIn[j][base], td);
state->Process(temps[1], temps[0], index, step, td);
for(k = 0;k < NumChannels;k++)
{
ALfloat gain = state->Gain[j][k];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < td;i++)
SamplesOut[k][base+i] += gain * temps[1][i];
}
}
for(i = 0;i < td;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
}
base += td;
}
state->index = index;
}
DECLARE_DEFAULT_ALLOCATORS(ALmodulatorState)
DEFINE_ALEFFECTSTATE_VTABLE(ALmodulatorState);
typedef struct ALmodulatorStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALmodulatorStateFactory;
static ALeffectState *ALmodulatorStateFactory_create(ALmodulatorStateFactory *UNUSED(factory))
{
ALmodulatorState *state;
ALuint i;
state = ALmodulatorState_New(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALmodulatorState, ALeffectState, state);
state->index = 0;
state->step = 1;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ALfilterState_clear(&state->Filter[i]);
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALmodulatorStateFactory);
ALeffectStateFactory *ALmodulatorStateFactory_getFactory(void)
{
static ALmodulatorStateFactory ModulatorFactory = { { GET_VTABLE2(ALmodulatorStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ModulatorFactory);
}
void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Frequency = val;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.HighPassCutoff = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALmodulator_setParamf(effect, context, param, vals[0]);
}
void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
ALmodulator_setParamf(effect, context, param, (ALfloat)val);
break;
case AL_RING_MODULATOR_WAVEFORM:
if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Waveform = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALmodulator_setParami(effect, context, param, vals[0]);
}
void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = (ALint)props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = (ALint)props->Modulator.HighPassCutoff;
break;
case AL_RING_MODULATOR_WAVEFORM:
*val = props->Modulator.Waveform;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALmodulator_getParami(effect, context, param, vals);
}
void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = props->Modulator.HighPassCutoff;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALmodulator_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALmodulator);