openal-soft/utils/makemhr/loaddef.cpp
2019-03-25 00:21:45 -07:00

2018 lines
60 KiB
C++

/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2011-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include <cstring>
#include <limits>
#include "mysofa.h"
#include "loaddef.h"
// Constants for accessing the token reader's ring buffer.
#define TR_RING_BITS (16)
#define TR_RING_SIZE (1 << TR_RING_BITS)
#define TR_RING_MASK (TR_RING_SIZE - 1)
// The token reader's load interval in bytes.
#define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
// Token reader state for parsing the data set definition.
struct TokenReaderT {
FILE *mFile;
const char *mName;
uint mLine;
uint mColumn;
char mRing[TR_RING_SIZE];
size_t mIn;
size_t mOut;
};
// The maximum identifier length used when processing the data set
// definition.
#define MAX_IDENT_LEN (16)
// The limits for the listener's head 'radius' in the data set definition.
#define MIN_RADIUS (0.05)
#define MAX_RADIUS (0.15)
// The maximum number of channels that can be addressed for a WAVE file
// source listed in the data set definition.
#define MAX_WAVE_CHANNELS (65535)
// The limits to the byte size for a binary source listed in the definition
// file.
#define MIN_BIN_SIZE (2)
#define MAX_BIN_SIZE (4)
// The minimum number of significant bits for binary sources listed in the
// data set definition. The maximum is calculated from the byte size.
#define MIN_BIN_BITS (16)
// The limits to the number of significant bits for an ASCII source listed in
// the data set definition.
#define MIN_ASCII_BITS (16)
#define MAX_ASCII_BITS (32)
// The four-character-codes for RIFF/RIFX WAVE file chunks.
#define FOURCC_RIFF (0x46464952) // 'RIFF'
#define FOURCC_RIFX (0x58464952) // 'RIFX'
#define FOURCC_WAVE (0x45564157) // 'WAVE'
#define FOURCC_FMT (0x20746D66) // 'fmt '
#define FOURCC_DATA (0x61746164) // 'data'
#define FOURCC_LIST (0x5453494C) // 'LIST'
#define FOURCC_WAVL (0x6C766177) // 'wavl'
#define FOURCC_SLNT (0x746E6C73) // 'slnt'
// The supported wave formats.
#define WAVE_FORMAT_PCM (0x0001)
#define WAVE_FORMAT_IEEE_FLOAT (0x0003)
#define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
enum ByteOrderT {
BO_NONE,
BO_LITTLE,
BO_BIG
};
// Source format for the references listed in the data set definition.
enum SourceFormatT {
SF_NONE,
SF_ASCII, // ASCII text file.
SF_BIN_LE, // Little-endian binary file.
SF_BIN_BE, // Big-endian binary file.
SF_WAVE, // RIFF/RIFX WAVE file.
SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file.
};
// Element types for the references listed in the data set definition.
enum ElementTypeT {
ET_NONE,
ET_INT, // Integer elements.
ET_FP // Floating-point elements.
};
// Source reference state used when loading sources.
struct SourceRefT {
SourceFormatT mFormat;
ElementTypeT mType;
uint mSize;
int mBits;
uint mChannel;
double mAzimuth;
double mElevation;
double mRadius;
uint mSkip;
uint mOffset;
char mPath[MAX_PATH_LEN+1];
};
/* Whitespace is not significant. It can process tokens as identifiers, numbers
* (integer and floating-point), strings, and operators. Strings must be
* encapsulated by double-quotes and cannot span multiple lines.
*/
// Setup the reader on the given file. The filename can be NULL if no error
// output is desired.
static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
{
const char *name = nullptr;
if(filename)
{
const char *slash = strrchr(filename, '/');
if(slash)
{
const char *bslash = strrchr(slash+1, '\\');
if(bslash) name = bslash+1;
else name = slash+1;
}
else
{
const char *bslash = strrchr(filename, '\\');
if(bslash) name = bslash+1;
else name = filename;
}
}
tr->mFile = fp;
tr->mName = name;
tr->mLine = 1;
tr->mColumn = 1;
tr->mIn = 0;
tr->mOut = 0;
}
// Prime the reader's ring buffer, and return a result indicating that there
// is text to process.
static int TrLoad(TokenReaderT *tr)
{
size_t toLoad, in, count;
toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
{
// Load TR_LOAD_SIZE (or less if at the end of the file) per read.
toLoad = TR_LOAD_SIZE;
in = tr->mIn&TR_RING_MASK;
count = TR_RING_SIZE - in;
if(count < toLoad)
{
tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
}
else
tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
if(tr->mOut >= TR_RING_SIZE)
{
tr->mOut -= TR_RING_SIZE;
tr->mIn -= TR_RING_SIZE;
}
}
if(tr->mIn > tr->mOut)
return 1;
return 0;
}
// Error display routine. Only displays when the base name is not NULL.
static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
{
if(!tr->mName)
return;
fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column);
vfprintf(stderr, format, argPtr);
}
// Used to display an error at a saved line/column.
static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
{
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, line, column, format, argPtr);
va_end(argPtr);
}
// Used to display an error at the current line/column.
static void TrError(const TokenReaderT *tr, const char *format, ...)
{
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
va_end(argPtr);
}
// Skips to the next line.
static void TrSkipLine(TokenReaderT *tr)
{
char ch;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
break;
}
tr->mColumn ++;
}
}
// Skips to the next token.
static int TrSkipWhitespace(TokenReaderT *tr)
{
while(TrLoad(tr))
{
char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
if(isspace(ch))
{
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
}
else
tr->mColumn++;
}
else if(ch == '#')
TrSkipLine(tr);
else
return 1;
}
return 0;
}
// Get the line and/or column of the next token (or the end of input).
static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
{
TrSkipWhitespace(tr);
if(line) *line = tr->mLine;
if(column) *column = tr->mColumn;
}
// Checks to see if a token is (likely to be) an identifier. It does not
// display any errors and will not proceed to the next token.
static int TrIsIdent(TokenReaderT *tr)
{
if(!TrSkipWhitespace(tr))
return 0;
char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
return ch == '_' || isalpha(ch);
}
// Checks to see if a token is the given operator. It does not display any
// errors and will not proceed to the next token.
static int TrIsOperator(TokenReaderT *tr, const char *op)
{
size_t out, len;
char ch;
if(!TrSkipWhitespace(tr))
return 0;
out = tr->mOut;
len = 0;
while(op[len] != '\0' && out < tr->mIn)
{
ch = tr->mRing[out&TR_RING_MASK];
if(ch != op[len]) break;
len++;
out++;
}
if(op[len] == '\0')
return 1;
return 0;
}
/* The TrRead*() routines obtain the value of a matching token type. They
* display type, form, and boundary errors and will proceed to the next
* token.
*/
// Reads and validates an identifier token.
static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '_' || isalpha(ch))
{
len = 0;
do {
if(len < maxLen)
ident[len] = ch;
len++;
tr->mOut++;
if(!TrLoad(tr))
break;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
} while(ch == '_' || isdigit(ch) || isalpha(ch));
tr->mColumn += len;
if(len < maxLen)
{
ident[len] = '\0';
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
return 0;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
return 0;
}
// Reads and validates (including bounds) an integer token.
static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
{
uint col, digis, len;
char ch, temp[64+1];
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
digis = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
return 0;
}
temp[len] = '\0';
*value = strtol(temp, nullptr, 10);
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
return 0;
}
// Reads and validates (including bounds) a float token.
static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
{
uint col, digis, len;
char ch, temp[64+1];
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
digis = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(ch == '.')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(digis > 0)
{
if(ch == 'E' || ch == 'e')
{
if(len < 64)
temp[len] = ch;
len++;
digis = 0;
tr->mOut++;
if(ch == '+' || ch == '-')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Float is too long.");
return 0;
}
temp[len] = '\0';
*value = strtod(temp, nullptr);
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
else
tr->mColumn += len;
}
TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
return 0;
}
// Reads and validates a string token.
static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '\"')
{
tr->mOut++;
len = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
tr->mOut++;
if(ch == '\"')
break;
if(ch == '\n')
{
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
return 0;
}
if(len < maxLen)
text[len] = ch;
len++;
}
if(ch != '\"')
{
tr->mColumn += 1 + len;
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
return 0;
}
tr->mColumn += 2 + len;
if(len > maxLen)
{
TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
return 0;
}
text[len] = '\0';
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
return 0;
}
// Reads and validates the given operator.
static int TrReadOperator(TokenReaderT *tr, const char *op)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
while(op[len] != '\0' && TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch != op[len]) break;
len++;
tr->mOut++;
}
tr->mColumn += len;
if(op[len] == '\0')
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
return 0;
}
/*************************
*** File source input ***
*************************/
// Read a binary value of the specified byte order and byte size from a file,
// storing it as a 32-bit unsigned integer.
static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out)
{
uint8_t in[4];
uint32_t accum;
uint i;
if(fread(in, 1, bytes, fp) != bytes)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
accum = 0;
switch(order)
{
case BO_LITTLE:
for(i = 0;i < bytes;i++)
accum = (accum<<8) | in[bytes - i - 1];
break;
case BO_BIG:
for(i = 0;i < bytes;i++)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
// Read a binary value of the specified byte order from a file, storing it as
// a 64-bit unsigned integer.
static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out)
{
uint8_t in[8];
uint64_t accum;
uint i;
if(fread(in, 1, 8, fp) != 8)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
accum = 0ULL;
switch(order)
{
case BO_LITTLE:
for(i = 0;i < 8;i++)
accum = (accum<<8) | in[8 - i - 1];
break;
case BO_BIG:
for(i = 0;i < 8;i++)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
/* Read a binary value of the specified type, byte order, and byte size from
* a file, converting it to a double. For integer types, the significant
* bits are used to normalize the result. The sign of bits determines
* whether they are padded toward the MSB (negative) or LSB (positive).
* Floating-point types are not normalized.
*/
static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
{
union {
uint32_t ui;
int32_t i;
float f;
} v4;
union {
uint64_t ui;
double f;
} v8;
*out = 0.0;
if(bytes > 4)
{
if(!ReadBin8(fp, filename, order, &v8.ui))
return 0;
if(type == ET_FP)
*out = v8.f;
}
else
{
if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
return 0;
if(type == ET_FP)
*out = v4.f;
else
{
if(bits > 0)
v4.ui >>= (8*bytes) - (static_cast<uint>(bits));
else
v4.ui &= (0xFFFFFFFF >> (32+bits));
if(v4.ui&static_cast<uint>(1<<(std::abs(bits)-1)))
v4.ui |= (0xFFFFFFFF << std::abs(bits));
*out = v4.i / static_cast<double>(1<<(std::abs(bits)-1));
}
}
return 1;
}
/* Read an ascii value of the specified type from a file, converting it to a
* double. For integer types, the significant bits are used to normalize the
* result. The sign of the bits should always be positive. This also skips
* up to one separator character before the element itself.
*/
static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
{
if(TrIsOperator(tr, ","))
TrReadOperator(tr, ",");
else if(TrIsOperator(tr, ":"))
TrReadOperator(tr, ":");
else if(TrIsOperator(tr, ";"))
TrReadOperator(tr, ";");
else if(TrIsOperator(tr, "|"))
TrReadOperator(tr, "|");
if(type == ET_FP)
{
if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(), out))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
}
else
{
int v;
if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
*out = v / static_cast<double>((1<<(bits-1))-1);
}
return 1;
}
// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
// the source parameters and data set metrics.
static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
{
uint32_t fourCC, chunkSize;
uint32_t format, channels, rate, dummy, block, size, bits;
chunkSize = 0;
do {
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
} while(fourCC != FOURCC_FMT);
if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
!ReadBin4(fp, src->mPath, order, 2, &channels) ||
!ReadBin4(fp, src->mPath, order, 4, &rate) ||
!ReadBin4(fp, src->mPath, order, 4, &dummy) ||
!ReadBin4(fp, src->mPath, order, 2, &block))
return 0;
block /= channels;
if(chunkSize > 14)
{
if(!ReadBin4(fp, src->mPath, order, 2, &size))
return 0;
size /= 8;
if(block > size)
size = block;
}
else
size = block;
if(format == WAVE_FORMAT_EXTENSIBLE)
{
fseek(fp, 2, SEEK_CUR);
if(!ReadBin4(fp, src->mPath, order, 2, &bits))
return 0;
if(bits == 0)
bits = 8 * size;
fseek(fp, 4, SEEK_CUR);
if(!ReadBin4(fp, src->mPath, order, 2, &format))
return 0;
fseek(fp, static_cast<long>(chunkSize - 26), SEEK_CUR);
}
else
{
bits = 8 * size;
if(chunkSize > 14)
fseek(fp, static_cast<long>(chunkSize - 16), SEEK_CUR);
else
fseek(fp, static_cast<long>(chunkSize - 14), SEEK_CUR);
}
if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
{
fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath);
return 0;
}
if(src->mChannel >= channels)
{
fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(rate != hrirRate)
{
fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(format == WAVE_FORMAT_PCM)
{
if(size < 2 || size > 4)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(bits < 16 || bits > (8*size))
{
fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath);
return 0;
}
src->mType = ET_INT;
}
else
{
if(size != 4 && size != 8)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
return 0;
}
src->mType = ET_FP;
}
src->mSize = size;
src->mBits = static_cast<int>(bits);
src->mSkip = channels;
return 1;
}
// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
int pre, post, skip;
uint i;
pre = static_cast<int>(src->mSize * src->mChannel);
post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1));
skip = 0;
for(i = 0;i < n;i++)
{
skip += pre;
if(skip > 0)
fseek(fp, skip, SEEK_CUR);
if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
return 0;
skip = post;
}
if(skip > 0)
fseek(fp, skip, SEEK_CUR);
return 1;
}
// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
// doubles.
static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
uint32_t fourCC, chunkSize, listSize, count;
uint block, skip, offset, i;
double lastSample;
for(;;)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
if(fourCC == FOURCC_DATA)
{
block = src->mSize * src->mSkip;
count = chunkSize / block;
if(count < (src->mOffset + n))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
return 0;
}
fseek(fp, static_cast<long>(src->mOffset * block), SEEK_CUR);
if(!ReadWaveData(fp, src, order, n, &hrir[0]))
return 0;
return 1;
}
else if(fourCC == FOURCC_LIST)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
return 0;
chunkSize -= 4;
if(fourCC == FOURCC_WAVL)
break;
}
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
}
listSize = chunkSize;
block = src->mSize * src->mSkip;
skip = src->mOffset;
offset = 0;
lastSample = 0.0;
while(offset < n && listSize > 8)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
listSize -= 8 + chunkSize;
if(fourCC == FOURCC_DATA)
{
count = chunkSize / block;
if(count > skip)
{
fseek(fp, static_cast<long>(skip * block), SEEK_CUR);
chunkSize -= skip * block;
count -= skip;
skip = 0;
if(count > (n - offset))
count = n - offset;
if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
return 0;
chunkSize -= count * block;
offset += count;
lastSample = hrir[offset - 1];
}
else
{
skip -= count;
count = 0;
}
}
else if(fourCC == FOURCC_SLNT)
{
if(!ReadBin4(fp, src->mPath, order, 4, &count))
return 0;
chunkSize -= 4;
if(count > skip)
{
count -= skip;
skip = 0;
if(count > (n - offset))
count = n - offset;
for(i = 0; i < count; i ++)
hrir[offset + i] = lastSample;
offset += count;
}
else
{
skip -= count;
count = 0;
}
}
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
}
if(offset < n)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
return 0;
}
return 1;
}
// Load a source HRIR from an ASCII text file containing a list of elements
// separated by whitespace or common list operators (',', ';', ':', '|').
static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
{
TokenReaderT tr;
uint i, j;
double dummy;
TrSetup(fp, nullptr, &tr);
for(i = 0;i < src->mOffset;i++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
return 0;
}
for(i = 0;i < n;i++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &hrir[i]))
return 0;
for(j = 0;j < src->mSkip;j++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
return 0;
}
}
return 1;
}
// Load a source HRIR from a binary file.
static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
uint i;
fseek(fp, static_cast<long>(src->mOffset), SEEK_SET);
for(i = 0;i < n;i++)
{
if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
return 0;
if(src->mSkip > 0)
fseek(fp, static_cast<long>(src->mSkip), SEEK_CUR);
}
return 1;
}
// Load a source HRIR from a RIFF/RIFX WAVE file.
static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
uint32_t fourCC, dummy;
ByteOrderT order;
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
return 0;
if(fourCC == FOURCC_RIFF)
order = BO_LITTLE;
else if(fourCC == FOURCC_RIFX)
order = BO_BIG;
else
{
fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
return 0;
}
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
return 0;
if(fourCC != FOURCC_WAVE)
{
fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
return 0;
}
if(!ReadWaveFormat(fp, order, hrirRate, src))
return 0;
if(!ReadWaveList(fp, src, order, n, hrir))
return 0;
return 1;
}
// Load a Spatially Oriented Format for Accoustics (SOFA) file.
static MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n)
{
struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)};
if(sofa) return sofa;
sofa = static_cast<MYSOFA_EASY*>(calloc(1, sizeof(*sofa)));
if(sofa == nullptr)
{
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
sofa->lookup = nullptr;
sofa->neighborhood = nullptr;
int err;
sofa->hrtf = mysofa_load(src->mPath, &err);
if(!sofa->hrtf)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath);
return nullptr;
}
err = mysofa_check(sofa->hrtf);
if(err != MYSOFA_OK)
/* NOTE: Some valid SOFA files are failing this check.
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath);
return nullptr;
}*/
fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath);
if((src->mOffset + n) > sofa->hrtf->N)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath);
return nullptr;
}
if(src->mChannel >= sofa->hrtf->R)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath);
return nullptr;
}
mysofa_tocartesian(sofa->hrtf);
sofa->lookup = mysofa_lookup_init(sofa->hrtf);
if(sofa->lookup == nullptr)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
return mysofa_cache_store(sofa, src->mPath, (float)hrirRate);
}
// Copies the HRIR data from a particular SOFA measurement.
static void ExtractSofaHrir(const MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir)
{
for(uint i{0u};i < n;i++)
hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i];
}
// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA)
// file.
static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
struct MYSOFA_EASY *sofa;
float target[3];
int nearest;
float *coords;
sofa = LoadSofaFile(src, hrirRate, n);
if(sofa == nullptr)
return 0;
/* NOTE: At some point it may be benficial or necessary to consider the
various coordinate systems, listener/source orientations, and
direciontal vectors defined in the SOFA file.
*/
target[0] = src->mAzimuth;
target[1] = src->mElevation;
target[2] = src->mRadius;
mysofa_s2c(target);
nearest = mysofa_lookup(sofa->lookup, target);
if(nearest < 0)
{
fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath);
return 0;
}
coords = &sofa->hrtf->SourcePosition.values[3 * nearest];
if(std::abs(coords[0] - target[0]) > 0.001 || std::abs(coords[1] - target[1]) > 0.001 || std::abs(coords[2] - target[2]) > 0.001)
{
fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath);
target[0] = coords[0];
target[1] = coords[1];
target[2] = coords[2];
mysofa_c2s(target);
fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]);
return 0;
}
ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir);
return 1;
}
// Load a source HRIR from a supported file type.
static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
FILE *fp{nullptr};
if(src->mFormat != SF_SOFA)
{
if(src->mFormat == SF_ASCII)
fp = fopen(src->mPath, "r");
else
fp = fopen(src->mPath, "rb");
if(fp == nullptr)
{
fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath);
return 0;
}
}
int result;
switch(src->mFormat)
{
case SF_ASCII:
result = LoadAsciiSource(fp, src, n, hrir);
break;
case SF_BIN_LE:
result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
break;
case SF_BIN_BE:
result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
break;
case SF_WAVE:
result = LoadWaveSource(fp, src, hrirRate, n, hrir);
break;
case SF_SOFA:
result = LoadSofaSource(src, hrirRate, n, hrir);
break;
default:
result = 0;
}
if(fp) fclose(fp);
return result;
}
// Match the channel type from a given identifier.
static ChannelTypeT MatchChannelType(const char *ident)
{
if(strcasecmp(ident, "mono") == 0)
return CT_MONO;
if(strcasecmp(ident, "stereo") == 0)
return CT_STEREO;
return CT_NONE;
}
// Process the data set definition to read and validate the data set metrics.
static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
{
int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
int hasDistance = 0, hasAzimuths = 0;
char ident[MAX_IDENT_LEN+1];
uint line, col;
double fpVal;
uint points;
int intVal;
double distances[MAX_FD_COUNT];
uint fdCount = 0;
uint evCounts[MAX_FD_COUNT];
std::vector<uint> azCounts(MAX_FD_COUNT * MAX_EV_COUNT);
TrIndication(tr, &line, &col);
while(TrIsIdent(tr))
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
if(strcasecmp(ident, "rate") == 0)
{
if(hasRate)
{
TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
return 0;
hData->mIrRate = static_cast<uint>(intVal);
hasRate = 1;
}
else if(strcasecmp(ident, "type") == 0)
{
char type[MAX_IDENT_LEN+1];
if(hasType)
{
TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
hData->mChannelType = MatchChannelType(type);
if(hData->mChannelType == CT_NONE)
{
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
}
else if(hData->mChannelType == CT_STEREO)
{
if(chanMode == CM_ForceMono)
hData->mChannelType = CT_MONO;
}
hasType = 1;
}
else if(strcasecmp(ident, "points") == 0)
{
if(hasPoints)
{
TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
return 0;
points = static_cast<uint>(intVal);
if(fftSize > 0 && points > fftSize)
{
TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
return 0;
}
if(points < truncSize)
{
TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
return 0;
}
hData->mIrPoints = points;
hData->mFftSize = fftSize;
hData->mIrSize = 1 + (fftSize / 2);
if(points > hData->mIrSize)
hData->mIrSize = points;
hasPoints = 1;
}
else if(strcasecmp(ident, "radius") == 0)
{
if(hasRadius)
{
TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
return 0;
hData->mRadius = fpVal;
hasRadius = 1;
}
else if(strcasecmp(ident, "distance") == 0)
{
uint count = 0;
if(hasDistance)
{
TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
for(;;)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
if(count > 0 && fpVal <= distances[count - 1])
{
TrError(tr, "Distances are not ascending.\n");
return 0;
}
distances[count++] = fpVal;
if(!TrIsOperator(tr, ","))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasDistance = 1;
}
else if(strcasecmp(ident, "azimuths") == 0)
{
uint count = 0;
if(hasAzimuths)
{
TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
evCounts[0] = 0;
for(;;)
{
if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
return 0;
azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast<uint>(intVal);
if(TrIsOperator(tr, ","))
{
if(evCounts[count] >= MAX_EV_COUNT)
{
TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
else
{
if(evCounts[count] < MIN_EV_COUNT)
{
TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
return 0;
}
if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
{
TrError(tr, "Poles are not singular for field %d.\n", count - 1);
return 0;
}
count++;
if(!TrIsOperator(tr, ";"))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
return 0;
}
evCounts[count] = 0;
TrReadOperator(tr, ";");
}
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasAzimuths = 1;
}
else
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
TrSkipWhitespace(tr);
}
if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
if(distances[0] < hData->mRadius)
{
TrError(tr, "Distance cannot start below head radius.\n");
return 0;
}
if(hData->mChannelType == CT_NONE)
hData->mChannelType = CT_MONO;
if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData))
{
fprintf(stderr, "Error: Out of memory.\n");
exit(-1);
}
return 1;
}
// Parse an index triplet from the data set definition.
static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
{
int intVal;
if(hData->mFdCount > 1)
{
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFdCount) - 1, &intVal))
return 0;
*fi = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
}
else
{
*fi = 0;
}
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvCount) - 1, &intVal))
return 0;
*ei = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal))
return 0;
*ai = static_cast<uint>(intVal);
return 1;
}
// Match the source format from a given identifier.
static SourceFormatT MatchSourceFormat(const char *ident)
{
if(strcasecmp(ident, "ascii") == 0)
return SF_ASCII;
if(strcasecmp(ident, "bin_le") == 0)
return SF_BIN_LE;
if(strcasecmp(ident, "bin_be") == 0)
return SF_BIN_BE;
if(strcasecmp(ident, "wave") == 0)
return SF_WAVE;
if(strcasecmp(ident, "sofa") == 0)
return SF_SOFA;
return SF_NONE;
}
// Match the source element type from a given identifier.
static ElementTypeT MatchElementType(const char *ident)
{
if(strcasecmp(ident, "int") == 0)
return ET_INT;
if(strcasecmp(ident, "fp") == 0)
return ET_FP;
return ET_NONE;
}
// Parse and validate a source reference from the data set definition.
static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
{
char ident[MAX_IDENT_LEN+1];
uint line, col;
double fpVal;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mFormat = MatchSourceFormat(ident);
if(src->mFormat == SF_NONE)
{
TrErrorAt(tr, line, col, "Expected a source format.\n");
return 0;
}
if(!TrReadOperator(tr, "("))
return 0;
if(src->mFormat == SF_SOFA)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
src->mRadius = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -90.0, 90.0, &fpVal))
return 0;
src->mElevation = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -360.0, 360.0, &fpVal))
return 0;
src->mAzimuth = fpVal;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = (uint)intVal;
src->mSkip = 0;
}
else if(src->mFormat == SF_WAVE)
{
if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = static_cast<uint>(intVal);
src->mSkip = 0;
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mType = MatchElementType(ident);
if(src->mType == ET_NONE)
{
TrErrorAt(tr, line, col, "Expected a source element type.\n");
return 0;
}
if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
{
if(!TrReadOperator(tr, ","))
return 0;
if(src->mType == ET_INT)
{
if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
return 0;
src->mSize = static_cast<uint>(intVal);
if(!TrIsOperator(tr, ","))
src->mBits = static_cast<int>(8*src->mSize);
else
{
TrReadOperator(tr, ",");
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(std::abs(intVal) < MIN_BIN_BITS || static_cast<uint>(std::abs(intVal)) > (8*src->mSize))
{
TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
return 0;
}
src->mBits = intVal;
}
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(intVal != 4 && intVal != 8)
{
TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
return 0;
}
src->mSize = static_cast<uint>(intVal);
src->mBits = 0;
}
}
else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
{
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
return 0;
src->mSize = 0;
src->mBits = intVal;
}
else
{
src->mSize = 0;
src->mBits = 0;
}
if(!TrIsOperator(tr, ";"))
src->mSkip = 0;
else
{
TrReadOperator(tr, ";");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mSkip = static_cast<uint>(intVal);
}
}
if(!TrReadOperator(tr, ")"))
return 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = static_cast<uint>(intVal);
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
return 0;
return 1;
}
// Parse and validate a SOFA source reference from the data set definition.
static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src)
{
char ident[MAX_IDENT_LEN+1];
uint line, col;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mFormat = MatchSourceFormat(ident);
if(src->mFormat != SF_SOFA)
{
TrErrorAt(tr, line, col, "Expected the SOFA source format.\n");
return 0;
}
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = 0;
src->mSkip = 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = (uint)intVal;
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
return 0;
return 1;
}
// Match the target ear (index) from a given identifier.
static int MatchTargetEar(const char *ident)
{
if(strcasecmp(ident, "left") == 0)
return 0;
if(strcasecmp(ident, "right") == 0)
return 1;
return -1;
}
// Calculate the onset time of an HRIR and average it with any existing
// timing for its field, elevation, azimuth, and ear.
static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
{
std::vector<double> upsampled(10 * n);
{
ResamplerT rs;
ResamplerSetup(&rs, rate, 10 * rate);
ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
}
double mag{0.0};
for(uint i{0u};i < 10*n;i++)
mag = std::max(std::abs(upsampled[i]), mag);
mag *= 0.15;
uint i{0u};
for(;i < 10*n;i++)
{
if(std::abs(upsampled[i]) >= mag)
break;
}
return Lerp(onset, static_cast<double>(i) / (10*rate), f);
}
// Calculate the magnitude response of an HRIR and average it with any
// existing responses for its field, elevation, azimuth, and ear.
static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
{
uint m = 1 + (n / 2), i;
std::vector<complex_d> h(n);
std::vector<double> r(n);
for(i = 0;i < points;i++)
h[i] = complex_d{hrir[i], 0.0};
for(;i < n;i++)
h[i] = complex_d{0.0, 0.0};
FftForward(n, h.data());
MagnitudeResponse(n, h.data(), r.data());
for(i = 0;i < m;i++)
mag[i] = Lerp(mag[i], r[i], f);
}
// Process the list of sources in the data set definition.
static int ProcessSources(TokenReaderT *tr, HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
double *hrirs = hData->mHrirsBase.data();
std::vector<double> hrir(hData->mIrPoints);
uint line, col, fi, ei, ai, ti;
int count;
printf("Loading sources...");
fflush(stdout);
count = 0;
while(TrIsOperator(tr, "["))
{
double factor[2]{ 1.0, 1.0 };
TrIndication(tr, &line, &col);
TrReadOperator(tr, "[");
if(TrIsOperator(tr, "*"))
{
SourceRefT src;
struct MYSOFA_EASY *sofa;
uint si;
TrReadOperator(tr, "*");
if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
if(!ReadSofaRef(tr, &src))
return 0;
if(hData->mChannelType == CT_STEREO)
{
char type[MAX_IDENT_LEN+1];
ChannelTypeT channelType;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
channelType = MatchChannelType(type);
switch(channelType)
{
case CT_NONE:
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
case CT_MONO:
src.mChannel = 0;
break;
case CT_STEREO:
src.mChannel = 1;
break;
}
}
else
{
char type[MAX_IDENT_LEN+1];
ChannelTypeT channelType;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
channelType = MatchChannelType(type);
if(channelType != CT_MONO)
{
TrErrorAt(tr, line, col, "Expected a mono channel type.\n");
return 0;
}
src.mChannel = 0;
}
sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints);
if(!sofa) return 0;
for(si = 0;si < sofa->hrtf->M;si++)
{
printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M);
fflush(stdout);
float aer[3] = {
sofa->hrtf->SourcePosition.values[3*si],
sofa->hrtf->SourcePosition.values[3*si + 1],
sofa->hrtf->SourcePosition.values[3*si + 2]
};
mysofa_c2s(aer);
if(std::fabs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
for(fi = 0;fi < hData->mFdCount;fi++)
{
double delta = aer[2] - hData->mFds[fi].mDistance;
if(std::abs(delta) < 0.001)
break;
}
if(fi >= hData->mFdCount)
continue;
double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0};
ei = (int)std::round(ef);
ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1);
if(std::abs(ef) >= 0.1)
continue;
double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f};
ai = (int)std::round(af);
af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount;
ai = ai % hData->mFds[fi].mEvs[ei].mAzCount;
if(std::abs(af) >= 0.1)
continue;
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data());
azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex];
azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]);
if(src.mChannel == 1)
{
ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data());
azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)];
azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]);
}
// TODO: Since some SOFA files contain minimum phase HRIRs,
// it would be beneficial to check for per-measurement delays
// (when available) to reconstruct the HRTDs.
}
continue;
}
if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
return 0;
if(!TrReadOperator(tr, "]"))
return 0;
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
TrErrorAt(tr, line, col, "Redefinition of source.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
for(;;)
{
SourceRefT src;
uint ti = 0;
if(!ReadSourceRef(tr, &src))
return 0;
// TODO: Would be nice to display 'x of y files', but that would
// require preparing the source refs first to get a total count
// before loading them.
++count;
printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
fflush(stdout);
if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data()))
return 0;
if(hData->mChannelType == CT_STEREO)
{
char ident[MAX_IDENT_LEN+1];
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
ti = MatchTargetEar(ident);
if(static_cast<int>(ti) < 0)
{
TrErrorAt(tr, line, col, "Expected a target ear.\n");
return 0;
}
}
azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]);
factor[ti] += 1.0;
if(!TrIsOperator(tr, "+"))
break;
TrReadOperator(tr, "+");
}
if(hData->mChannelType == CT_STEREO)
{
if(azd->mIrs[0] == nullptr)
{
TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
return 0;
}
else if(azd->mIrs[1] == nullptr)
{
TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
return 0;
}
}
}
printf("\n");
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
break;
}
if(ei >= hData->mFds[fi].mEvCount)
{
TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
return 0;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] == nullptr)
{
TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
}
}
}
for(ti = 0;ti < channels;ti++)
{
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
}
}
}
}
if(!TrLoad(tr))
{
mysofa_cache_release_all();
return 1;
}
TrError(tr, "Errant data at end of source list.\n");
mysofa_cache_release_all();
return 0;
}
bool LoadDefInput(FILE *fp, const char *filename, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
{
TokenReaderT tr;
TrSetup(fp, filename, &tr);
if(!ProcessMetrics(&tr, fftSize, truncSize, chanMode, hData))
{
if(fp != stdin)
fclose(fp);
return false;
}
if(!ProcessSources(&tr, hData))
{
if(fp != stdin)
fclose(fp);
return false;
}
return true;
}