openal-soft/Alc/mixvoice.cpp
2019-02-11 12:16:58 -08:00

751 lines
29 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cassert>
#include <numeric>
#include <algorithm>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alcontext.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "sample_cvt.h"
#include "alu.h"
#include "alconfig.h"
#include "ringbuffer.h"
#include "cpu_caps.h"
#include "mixer/defs.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
/* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */
static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!");
Resampler ResamplerDefault = LinearResampler;
MixerFunc MixSamples = Mix_<CTag>;
RowMixerFunc MixRowSamples = MixRow_<CTag>;
static HrtfMixerFunc MixHrtfSamples = MixHrtf_<CTag>;
static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_<CTag>;
static MixerFunc SelectMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_<SSETag>;
#endif
return Mix_<CTag>;
}
static RowMixerFunc SelectRowMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixRow_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixRow_<SSETag>;
#endif
return MixRow_<CTag>;
}
static inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_<SSETag>;
#endif
return MixHrtf_<CTag>;
}
static inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtfBlend_<SSETag>;
#endif
return MixHrtfBlend_<CTag>;
}
ResamplerFunc SelectResampler(Resampler resampler)
{
switch(resampler)
{
case PointResampler:
return Resample_<PointTag,CTag>;
case LinearResampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<LerpTag,NEONTag>;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_<LerpTag,SSE4Tag>;
#endif
#ifdef HAVE_SSE2
if((CPUCapFlags&CPU_CAP_SSE2))
return Resample_<LerpTag,SSE2Tag>;
#endif
return Resample_<LerpTag,CTag>;
case FIR4Resampler:
return Resample_<CubicTag,CTag>;
case BSinc12Resampler:
case BSinc24Resampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_<BSincTag,NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_<BSincTag,SSETag>;
#endif
return Resample_<BSincTag,CTag>;
}
return Resample_<PointTag,CTag>;
}
void aluInitMixer()
{
const char *str;
if(ConfigValueStr(nullptr, nullptr, "resampler", &str))
{
if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0)
ResamplerDefault = PointResampler;
else if(strcasecmp(str, "linear") == 0)
ResamplerDefault = LinearResampler;
else if(strcasecmp(str, "cubic") == 0)
ResamplerDefault = FIR4Resampler;
else if(strcasecmp(str, "bsinc12") == 0)
ResamplerDefault = BSinc12Resampler;
else if(strcasecmp(str, "bsinc24") == 0)
ResamplerDefault = BSinc24Resampler;
else if(strcasecmp(str, "bsinc") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
ResamplerDefault = BSinc12Resampler;
}
else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
ResamplerDefault = FIR4Resampler;
}
else
{
char *end;
long n = strtol(str, &end, 0);
if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler))
ResamplerDefault = static_cast<Resampler>(n);
else
WARN("Invalid resampler: %s\n", str);
}
}
MixHrtfBlendSamples = SelectHrtfBlendMixer();
MixHrtfSamples = SelectHrtfMixer();
MixSamples = SelectMixer();
MixRowSamples = SelectRowMixer();
}
namespace {
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
* chokes on that given the inline specializations.
*/
template<FmtType T>
inline ALfloat LoadSample(typename FmtTypeTraits<T>::Type val);
template<> inline ALfloat LoadSample<FmtUByte>(FmtTypeTraits<FmtUByte>::Type val)
{ return (val-128) * (1.0f/128.0f); }
template<> inline ALfloat LoadSample<FmtShort>(FmtTypeTraits<FmtShort>::Type val)
{ return val * (1.0f/32768.0f); }
template<> inline ALfloat LoadSample<FmtFloat>(FmtTypeTraits<FmtFloat>::Type val)
{ return val; }
template<> inline ALfloat LoadSample<FmtDouble>(FmtTypeTraits<FmtDouble>::Type val)
{ return static_cast<ALfloat>(val); }
template<> inline ALfloat LoadSample<FmtMulaw>(FmtTypeTraits<FmtMulaw>::Type val)
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
template<> inline ALfloat LoadSample<FmtAlaw>(FmtTypeTraits<FmtAlaw>::Type val)
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
template<FmtType T>
inline void LoadSampleArray(ALfloat *RESTRICT dst, const void *src, ALint srcstep, ALsizei samples)
{
using SampleType = typename FmtTypeTraits<T>::Type;
const SampleType *ssrc = static_cast<const SampleType*>(src);
for(ALsizei i{0};i < samples;i++)
dst[i] += LoadSample<T>(ssrc[i*srcstep]);
}
void LoadSamples(ALfloat *RESTRICT dst, const ALvoid *RESTRICT src, ALint srcstep, FmtType srctype,
ALsizei samples)
{
#define HANDLE_FMT(T) \
case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
}
#undef HANDLE_FMT
}
const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter,
ALfloat *RESTRICT dst, const ALfloat *RESTRICT src,
ALsizei numsamples, int type)
{
ALsizei i;
switch(type)
{
case AF_None:
lpfilter->passthru(numsamples);
hpfilter->passthru(numsamples);
break;
case AF_LowPass:
lpfilter->process(dst, src, numsamples);
hpfilter->passthru(numsamples);
return dst;
case AF_HighPass:
lpfilter->passthru(numsamples);
hpfilter->process(dst, src, numsamples);
return dst;
case AF_BandPass:
for(i = 0;i < numsamples;)
{
ALfloat temp[256];
ALsizei todo = mini(256, numsamples-i);
lpfilter->process(temp, src+i, todo);
hpfilter->process(dst+i, temp, todo);
i += todo;
}
return dst;
}
return src;
}
} // namespace
/* This function uses these device temp buffers. */
#define SOURCE_DATA_BUF 0
#define RESAMPLED_BUF 1
#define FILTERED_BUF 2
#define NFC_DATA_BUF 3
ALboolean MixSource(ALvoice *voice, const ALuint SourceID, ALCcontext *Context, const ALsizei SamplesToDo)
{
ASSUME(SamplesToDo > 0);
/* Get source info */
bool isplaying{true}; /* Will only be called while playing. */
bool isstatic{(voice->Flags&VOICE_IS_STATIC) != 0};
ALsizei DataPosInt{static_cast<ALsizei>(voice->position.load(std::memory_order_acquire))};
ALsizei DataPosFrac{voice->position_fraction.load(std::memory_order_relaxed)};
ALbufferlistitem *BufferListItem{voice->current_buffer.load(std::memory_order_relaxed)};
ALbufferlistitem *BufferLoopItem{voice->loop_buffer.load(std::memory_order_relaxed)};
ALsizei NumChannels{voice->NumChannels};
ALsizei SampleSize{voice->SampleSize};
ALint increment{voice->Step};
ASSUME(DataPosInt >= 0);
ASSUME(DataPosFrac >= 0);
ASSUME(NumChannels > 0);
ASSUME(SampleSize > 0);
ASSUME(increment > 0);
ALCdevice *Device{Context->Device};
const ALsizei IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0};
const int OutLIdx{GetChannelIdxByName(Device->RealOut, FrontLeft)};
const int OutRIdx{GetChannelIdxByName(Device->RealOut, FrontRight)};
ASSUME(IrSize >= 0);
ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ?
Resample_<CopyTag,CTag> : voice->Resampler};
ALsizei Counter{(voice->Flags&VOICE_IS_FADING) ? SamplesToDo : 0};
if(!Counter)
{
/* No fading, just overwrite the old/current params. */
for(ALsizei chan{0};chan < NumChannels;chan++)
{
DirectParams &parms = voice->Direct.Params[chan];
if(!(voice->Flags&VOICE_HAS_HRTF))
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
std::begin(parms.Gains.Current));
else
parms.Hrtf.Old = parms.Hrtf.Target;
auto set_current = [chan](ALvoice::SendData &send) -> void
{
if(!send.Buffer)
return;
SendParams &parms = send.Params[chan];
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
std::begin(parms.Gains.Current));
};
std::for_each(voice->Send.begin(), voice->Send.end(), set_current);
}
}
else if((voice->Flags&VOICE_HAS_HRTF))
{
for(ALsizei chan{0};chan < NumChannels;chan++)
{
DirectParams &parms = voice->Direct.Params[chan];
if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
{
/* The old HRTF params are silent, so overwrite the old
* coefficients with the new, and reset the old gain to 0. The
* future mix will then fade from silence.
*/
parms.Hrtf.Old = parms.Hrtf.Target;
parms.Hrtf.Old.Gain = 0.0f;
}
}
}
ALsizei buffers_done{0};
ALsizei OutPos{0};
do {
/* Figure out how many buffer samples will be needed */
ALsizei DstBufferSize{SamplesToDo - OutPos};
/* Calculate the last written dst sample pos. */
int64_t DataSize64{DstBufferSize - 1};
/* Calculate the last read src sample pos. */
DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS;
/* +1 to get the src sample count, include padding. */
DataSize64 += 1 + MAX_RESAMPLE_PADDING*2;
auto SrcBufferSize = static_cast<ALsizei>(mini64(DataSize64, BUFFERSIZE+1));
if(SrcBufferSize > BUFFERSIZE)
{
SrcBufferSize = BUFFERSIZE;
/* If the source buffer got saturated, we can't fill the desired
* dst size. Figure out how many samples we can actually mix from
* this.
*/
DataSize64 = SrcBufferSize - MAX_RESAMPLE_PADDING*2;
DataSize64 = ((DataSize64<<FRACTIONBITS) - DataPosFrac + increment-1) / increment;
DstBufferSize = static_cast<ALsizei>(mini64(DataSize64, DstBufferSize));
/* Some mixers like having a multiple of 4, so try to give that
* unless this is the last update.
*/
if(DstBufferSize < SamplesToDo-OutPos)
DstBufferSize &= ~3;
}
/* It's impossible to have a buffer list item with no entries. */
assert(BufferListItem->num_buffers > 0);
for(ALsizei chan{0};chan < NumChannels;chan++)
{
ALfloat (&SrcData)[BUFFERSIZE] = Device->TempBuffer[SOURCE_DATA_BUF];
/* Load the previous samples into the source data first, and clear the rest. */
auto srciter = std::copy(std::begin(voice->PrevSamples[chan]),
std::end(voice->PrevSamples[chan]), std::begin(SrcData));
std::fill(srciter, std::end(SrcData), 0.0f);
auto FilledAmt = static_cast<ALsizei>(voice->PrevSamples[chan].size());
if(isstatic)
{
/* TODO: For static sources, loop points are taken from the
* first buffer (should be adjusted by any buffer offset, to
* possibly be added later).
*/
const ALbuffer *Buffer0{BufferListItem->buffers[0]};
const ALsizei LoopStart{Buffer0->LoopStart};
const ALsizei LoopEnd{Buffer0->LoopEnd};
ASSUME(LoopStart >= 0);
ASSUME(LoopEnd > LoopStart);
/* If current pos is beyond the loop range, do not loop */
if(!BufferLoopItem || DataPosInt >= LoopEnd)
{
const ALsizei SizeToDo{SrcBufferSize - FilledAmt};
BufferLoopItem = nullptr;
auto load_buffer = [DataPosInt,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei
{
if(DataPosInt >= buffer->SampleLen)
return CompLen;
/* Load what's left to play from the buffer */
const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - DataPosInt)};
CompLen = maxi(CompLen, DataSize);
const ALbyte *Data{buffer->mData.data()};
LoadSamples(&SrcData[FilledAmt],
&Data[(DataPosInt*NumChannels + chan)*SampleSize],
NumChannels, buffer->mFmtType, DataSize
);
return CompLen;
};
auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers;
FilledAmt += std::accumulate(BufferListItem->buffers, buffers_end, ALsizei{0},
load_buffer);
}
else
{
const ALsizei SizeToDo{mini(SrcBufferSize - FilledAmt, LoopEnd - DataPosInt)};
auto load_buffer = [DataPosInt,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei
{
if(DataPosInt >= buffer->SampleLen)
return CompLen;
/* Load what's left of this loop iteration */
const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - DataPosInt)};
CompLen = maxi(CompLen, DataSize);
const ALbyte *Data{buffer->mData.data()};
LoadSamples(&SrcData[FilledAmt],
&Data[(DataPosInt*NumChannels + chan)*SampleSize],
NumChannels, buffer->mFmtType, DataSize
);
return CompLen;
};
auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers;
FilledAmt = std::accumulate(BufferListItem->buffers, buffers_end, ALsizei{0}, load_buffer);
const ALsizei LoopSize{LoopEnd - LoopStart};
while(SrcBufferSize > FilledAmt)
{
const ALsizei SizeToDo{mini(SrcBufferSize - FilledAmt, LoopSize)};
auto load_buffer_loop = [LoopStart,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei
{
if(LoopStart >= buffer->SampleLen)
return CompLen;
const ALsizei DataSize{mini(SizeToDo, buffer->SampleLen - LoopStart)};
CompLen = maxi(CompLen, DataSize);
const ALbyte *Data{buffer->mData.data()};
LoadSamples(&SrcData[FilledAmt],
&Data[(LoopStart*NumChannels + chan)*SampleSize],
NumChannels, buffer->mFmtType, DataSize
);
return CompLen;
};
FilledAmt += std::accumulate(BufferListItem->buffers, buffers_end,
ALsizei{0}, load_buffer_loop);
}
}
}
else
{
/* Crawl the buffer queue to fill in the temp buffer */
ALbufferlistitem *tmpiter{BufferListItem};
ALsizei pos{DataPosInt};
while(tmpiter && SrcBufferSize > FilledAmt)
{
if(pos >= tmpiter->max_samples)
{
pos -= tmpiter->max_samples;
tmpiter = tmpiter->next.load(std::memory_order_acquire);
if(!tmpiter) tmpiter = BufferLoopItem;
continue;
}
const ALsizei SizeToDo{SrcBufferSize - FilledAmt};
auto load_buffer = [pos,&SrcData,NumChannels,SampleSize,chan,FilledAmt,SizeToDo](ALsizei CompLen, const ALbuffer *buffer) -> ALsizei
{
if(!buffer) return CompLen;
ALsizei DataSize{buffer->SampleLen};
if(pos >= DataSize) return CompLen;
DataSize = mini(SizeToDo, DataSize - pos);
CompLen = maxi(CompLen, DataSize);
const ALbyte *Data{buffer->mData.data()};
Data += (pos*NumChannels + chan)*SampleSize;
LoadSamples(&SrcData[FilledAmt], Data, NumChannels,
buffer->mFmtType, DataSize);
return CompLen;
};
auto buffers_end = tmpiter->buffers + tmpiter->num_buffers;
FilledAmt += std::accumulate(tmpiter->buffers, buffers_end, ALsizei{0},
load_buffer);
if(SrcBufferSize <= FilledAmt)
break;
pos = 0;
tmpiter = tmpiter->next.load(std::memory_order_acquire);
if(!tmpiter) tmpiter = BufferLoopItem;
}
}
/* Store the last source samples used for next time. */
std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
voice->PrevSamples[chan].size(), std::begin(voice->PrevSamples[chan]));
/* Now resample, then filter and mix to the appropriate outputs. */
const ALfloat *ResampledData{Resample(&voice->ResampleState,
&SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment,
Device->TempBuffer[RESAMPLED_BUF], DstBufferSize
)};
{
DirectParams &parms = voice->Direct.Params[chan];
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass,
Device->TempBuffer[FILTERED_BUF], ResampledData, DstBufferSize,
voice->Direct.FilterType
)};
if(!(voice->Flags&VOICE_HAS_HRTF))
{
if(!(voice->Flags&VOICE_HAS_NFC))
MixSamples(samples, voice->Direct.Channels, voice->Direct.Buffer,
parms.Gains.Current, parms.Gains.Target, Counter, OutPos,
DstBufferSize);
else
{
MixSamples(samples,
voice->Direct.ChannelsPerOrder[0], voice->Direct.Buffer,
parms.Gains.Current, parms.Gains.Target, Counter, OutPos,
DstBufferSize);
ALfloat *nfcsamples{Device->TempBuffer[NFC_DATA_BUF]};
ALsizei chanoffset{voice->Direct.ChannelsPerOrder[0]};
using FilterProc = void (NfcFilter::*)(float*,const float*,int);
auto apply_nfc = [voice,&parms,samples,DstBufferSize,Counter,OutPos,&chanoffset,nfcsamples](FilterProc process, ALsizei order) -> void
{
if(voice->Direct.ChannelsPerOrder[order] < 1)
return;
(parms.NFCtrlFilter.*process)(nfcsamples, samples, DstBufferSize);
MixSamples(nfcsamples, voice->Direct.ChannelsPerOrder[order],
voice->Direct.Buffer+chanoffset, parms.Gains.Current+chanoffset,
parms.Gains.Target+chanoffset, Counter, OutPos, DstBufferSize);
chanoffset += voice->Direct.ChannelsPerOrder[order];
};
apply_nfc(&NfcFilter::process1, 1);
apply_nfc(&NfcFilter::process2, 2);
apply_nfc(&NfcFilter::process3, 3);
}
}
else
{
ALsizei fademix{0};
/* If fading, the old gain is not silence, and this is the
* first mixing pass, fade between the IRs.
*/
if(Counter && (parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD) && OutPos == 0)
{
fademix = mini(DstBufferSize, 128);
/* The new coefficients need to fade in completely
* since they're replacing the old ones. To keep the
* gain fading consistent, interpolate between the old
* and new target gains given how much of the fade time
* this mix handles.
*/
ALfloat gain{lerp(parms.Hrtf.Old.Gain, parms.Hrtf.Target.Gain,
minf(1.0f, static_cast<ALfloat>(fademix))/Counter)};
MixHrtfParams hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
hrtfparams.Gain = 0.0f;
hrtfparams.GainStep = gain / static_cast<ALfloat>(fademix);
MixHrtfBlendSamples(
voice->Direct.Buffer[OutLIdx], voice->Direct.Buffer[OutRIdx],
samples, voice->Offset, OutPos, IrSize, &parms.Hrtf.Old,
&hrtfparams, &parms.Hrtf.State, fademix);
/* Update the old parameters with the result. */
parms.Hrtf.Old = parms.Hrtf.Target;
if(fademix < Counter)
parms.Hrtf.Old.Gain = hrtfparams.Gain;
}
if(fademix < DstBufferSize)
{
const ALsizei todo{DstBufferSize - fademix};
ALfloat gain{parms.Hrtf.Target.Gain};
/* Interpolate the target gain if the gain fading lasts
* longer than this mix.
*/
if(Counter > DstBufferSize)
gain = lerp(parms.Hrtf.Old.Gain, gain,
static_cast<ALfloat>(todo)/(Counter-fademix));
MixHrtfParams hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
hrtfparams.Gain = parms.Hrtf.Old.Gain;
hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) / static_cast<ALfloat>(todo);
MixHrtfSamples(
voice->Direct.Buffer[OutLIdx], voice->Direct.Buffer[OutRIdx],
samples+fademix, voice->Offset+fademix, OutPos+fademix, IrSize,
&hrtfparams, &parms.Hrtf.State, todo);
/* Store the interpolated gain or the final target gain
* depending if the fade is done.
*/
if(DstBufferSize < Counter)
parms.Hrtf.Old.Gain = gain;
else
parms.Hrtf.Old.Gain = parms.Hrtf.Target.Gain;
}
}
}
ALfloat (&FilterBuf)[BUFFERSIZE] = Device->TempBuffer[FILTERED_BUF];
auto mix_send = [Counter,OutPos,DstBufferSize,chan,ResampledData,&FilterBuf](ALvoice::SendData &send) -> void
{
if(!send.Buffer)
return;
SendParams &parms = send.Params[chan];
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass,
FilterBuf, ResampledData, DstBufferSize, send.FilterType)};
MixSamples(samples, send.Channels, send.Buffer, parms.Gains.Current,
parms.Gains.Target, Counter, OutPos, DstBufferSize);
};
std::for_each(voice->Send.begin(), voice->Send.end(), mix_send);
}
/* Update positions */
DataPosFrac += increment*DstBufferSize;
DataPosInt += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
OutPos += DstBufferSize;
voice->Offset += DstBufferSize;
Counter = maxi(DstBufferSize, Counter) - DstBufferSize;
if(isstatic)
{
if(BufferLoopItem)
{
/* Handle looping static source */
const ALbuffer *Buffer{BufferListItem->buffers[0]};
ALsizei LoopStart{Buffer->LoopStart};
ALsizei LoopEnd{Buffer->LoopEnd};
if(DataPosInt >= LoopEnd)
{
assert(LoopEnd > LoopStart);
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
}
}
else
{
/* Handle non-looping static source */
if(DataPosInt >= BufferListItem->max_samples)
{
isplaying = false;
BufferListItem = nullptr;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
}
}
else while(1)
{
/* Handle streaming source */
if(BufferListItem->max_samples > DataPosInt)
break;
DataPosInt -= BufferListItem->max_samples;
buffers_done += BufferListItem->num_buffers;
BufferListItem = BufferListItem->next.load(std::memory_order_relaxed);
if(!BufferListItem && !(BufferListItem=BufferLoopItem))
{
isplaying = false;
DataPosInt = 0;
DataPosFrac = 0;
break;
}
}
} while(isplaying && OutPos < SamplesToDo);
voice->Flags |= VOICE_IS_FADING;
/* Update source info */
voice->position.store(DataPosInt, std::memory_order_relaxed);
voice->position_fraction.store(DataPosFrac, std::memory_order_relaxed);
voice->current_buffer.store(BufferListItem, std::memory_order_release);
/* Send any events now, after the position/buffer info was updated. */
ALbitfieldSOFT enabledevt{Context->EnabledEvts.load(std::memory_order_acquire)};
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
{
RingBuffer *ring{Context->AsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len > 0)
{
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}};
evt->u.bufcomp.id = SourceID;
evt->u.bufcomp.count = buffers_done;
ring->writeAdvance(1);
Context->EventSem.post();
}
}
return isplaying;
}