2010-04-23 07:54:43 -07:00

1631 lines
62 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alThunk.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
#define FRACTIONBITS 14
#define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
#define MAX_PITCH 65536
/* Minimum ramp length in milliseconds. The value below was chosen to
* adequately reduce clicks and pops from harsh gain changes. */
#define MIN_RAMP_LENGTH 16
static __inline ALfloat aluF2F(ALfloat Value)
{
return Value;
}
static __inline ALshort aluF2S(ALfloat Value)
{
ALint i;
if(Value < 0.0f)
{
i = (ALint)(Value*32768.0f);
i = max(-32768, i);
}
else
{
i = (ALint)(Value*32767.0f);
i = min( 32767, i);
}
return ((ALshort)i);
}
static __inline ALubyte aluF2UB(ALfloat Value)
{
ALshort i = aluF2S(Value);
return (i>>8)+128;
}
static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
static __inline ALvoid aluNormalize(ALfloat *inVector)
{
ALfloat length, inverse_length;
length = aluSqrt(aluDotproduct(inVector, inVector));
if(length != 0.0f)
{
inverse_length = 1.0f/length;
inVector[0] *= inverse_length;
inVector[1] *= inverse_length;
inVector[2] *= inverse_length;
}
}
static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
{
ALfloat temp[4] = {
vector[0], vector[1], vector[2], w
};
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
}
static ALvoid SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[OUTPUTCHANNELS],
Channel Speaker2Chan[OUTPUTCHANNELS], ALint chans)
{
char layout_str[256];
char *confkey, *next;
char *sep, *end;
Channel val;
int i;
strncpy(layout_str, GetConfigValue(NULL, name, ""), sizeof(layout_str));
layout_str[255] = 0;
if(!layout_str[0])
return;
next = confkey = layout_str;
while(next && *next)
{
confkey = next;
next = strchr(confkey, ',');
if(next)
{
*next = 0;
do {
next++;
} while(isspace(*next) || *next == ',');
}
sep = strchr(confkey, '=');
if(!sep || confkey == sep)
continue;
end = sep - 1;
while(isspace(*end) && end != confkey)
end--;
*(++end) = 0;
if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0)
val = FRONT_LEFT;
else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0)
val = FRONT_RIGHT;
else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0)
val = FRONT_CENTER;
else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0)
val = BACK_LEFT;
else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0)
val = BACK_RIGHT;
else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0)
val = BACK_CENTER;
else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0)
val = SIDE_LEFT;
else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0)
val = SIDE_RIGHT;
else
{
AL_PRINT("Unknown speaker for %s: \"%s\"\n", name, confkey);
continue;
}
*(sep++) = 0;
while(isspace(*sep))
sep++;
for(i = 0;i < chans;i++)
{
if(Speaker2Chan[i] == val)
{
long angle = strtol(sep, NULL, 10);
if(angle >= -180 && angle <= 180)
SpeakerAngle[i] = angle * M_PI/180.0f;
else
AL_PRINT("Invalid angle for speaker \"%s\": %ld\n", confkey, angle);
break;
}
}
}
for(i = 0;i < chans;i++)
{
int min = i;
int i2;
for(i2 = i+1;i2 < chans;i2++)
{
if(SpeakerAngle[i2] < SpeakerAngle[min])
min = i2;
}
if(min != i)
{
ALfloat tmpf;
Channel tmpc;
tmpf = SpeakerAngle[i];
SpeakerAngle[i] = SpeakerAngle[min];
SpeakerAngle[min] = tmpf;
tmpc = Speaker2Chan[i];
Speaker2Chan[i] = Speaker2Chan[min];
Speaker2Chan[min] = tmpc;
}
}
}
static __inline ALfloat aluLUTpos2Angle(ALint pos)
{
if(pos < QUADRANT_NUM)
return aluAtan((ALfloat)pos / (ALfloat)(QUADRANT_NUM - pos));
if(pos < 2 * QUADRANT_NUM)
return M_PI_2 + aluAtan((ALfloat)(pos - QUADRANT_NUM) / (ALfloat)(2 * QUADRANT_NUM - pos));
if(pos < 3 * QUADRANT_NUM)
return aluAtan((ALfloat)(pos - 2 * QUADRANT_NUM) / (ALfloat)(3 * QUADRANT_NUM - pos)) - M_PI;
return aluAtan((ALfloat)(pos - 3 * QUADRANT_NUM) / (ALfloat)(4 * QUADRANT_NUM - pos)) - M_PI_2;
}
ALvoid aluInitPanning(ALCdevice *Device)
{
ALfloat SpeakerAngle[OUTPUTCHANNELS];
Channel Speaker2Chan[OUTPUTCHANNELS];
ALfloat Alpha, Theta;
ALint pos, offset;
ALuint s, s2;
for(s = 0;s < OUTPUTCHANNELS;s++)
{
for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
Device->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f);
}
switch(Device->Format)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_MONO16:
case AL_FORMAT_MONO_FLOAT32:
Device->DuplicateStereo = AL_FALSE;
Device->ChannelMatrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][FRONT_CENTER] = 1.0f;
Device->NumChan = 1;
Speaker2Chan[0] = FRONT_CENTER;
SpeakerAngle[0] = 0.0f * M_PI/180.0f;
break;
case AL_FORMAT_STEREO8:
case AL_FORMAT_STEREO16:
case AL_FORMAT_STEREO_FLOAT32:
Device->DuplicateStereo = AL_FALSE;
Device->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
Device->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
Device->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
Device->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
Device->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Device->NumChan = 2;
Speaker2Chan[0] = FRONT_LEFT;
Speaker2Chan[1] = FRONT_RIGHT;
SpeakerAngle[0] = -90.0f * M_PI/180.0f;
SpeakerAngle[1] = 90.0f * M_PI/180.0f;
SetSpeakerArrangement("layout", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case AL_FORMAT_QUAD8:
case AL_FORMAT_QUAD16:
case AL_FORMAT_QUAD32:
Device->DuplicateStereo = GetConfigValueBool(NULL, "stereodup", 0);
Device->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Device->NumChan = 4;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_RIGHT;
Speaker2Chan[3] = BACK_RIGHT;
SpeakerAngle[0] = -135.0f * M_PI/180.0f;
SpeakerAngle[1] = -45.0f * M_PI/180.0f;
SpeakerAngle[2] = 45.0f * M_PI/180.0f;
SpeakerAngle[3] = 135.0f * M_PI/180.0f;
SetSpeakerArrangement("layout", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case AL_FORMAT_51CHN8:
case AL_FORMAT_51CHN16:
case AL_FORMAT_51CHN32:
Device->DuplicateStereo = GetConfigValueBool(NULL, "stereodup", 0);
Device->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Device->NumChan = 5;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = BACK_RIGHT;
SpeakerAngle[0] = -110.0f * M_PI/180.0f;
SpeakerAngle[1] = -30.0f * M_PI/180.0f;
SpeakerAngle[2] = 0.0f * M_PI/180.0f;
SpeakerAngle[3] = 30.0f * M_PI/180.0f;
SpeakerAngle[4] = 110.0f * M_PI/180.0f;
SetSpeakerArrangement("layout", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case AL_FORMAT_61CHN8:
case AL_FORMAT_61CHN16:
case AL_FORMAT_61CHN32:
Device->DuplicateStereo = GetConfigValueBool(NULL, "stereodup", 0);
Device->ChannelMatrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5);
Device->NumChan = 6;
Speaker2Chan[0] = SIDE_LEFT;
Speaker2Chan[1] = FRONT_LEFT;
Speaker2Chan[2] = FRONT_CENTER;
Speaker2Chan[3] = FRONT_RIGHT;
Speaker2Chan[4] = SIDE_RIGHT;
Speaker2Chan[5] = BACK_CENTER;
SpeakerAngle[0] = -90.0f * M_PI/180.0f;
SpeakerAngle[1] = -30.0f * M_PI/180.0f;
SpeakerAngle[2] = 0.0f * M_PI/180.0f;
SpeakerAngle[3] = 30.0f * M_PI/180.0f;
SpeakerAngle[4] = 90.0f * M_PI/180.0f;
SpeakerAngle[5] = 180.0f * M_PI/180.0f;
SetSpeakerArrangement("layout", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
case AL_FORMAT_71CHN8:
case AL_FORMAT_71CHN16:
case AL_FORMAT_71CHN32:
Device->DuplicateStereo = GetConfigValueBool(NULL, "stereodup", 0);
Device->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
Device->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
Device->NumChan = 7;
Speaker2Chan[0] = BACK_LEFT;
Speaker2Chan[1] = SIDE_LEFT;
Speaker2Chan[2] = FRONT_LEFT;
Speaker2Chan[3] = FRONT_CENTER;
Speaker2Chan[4] = FRONT_RIGHT;
Speaker2Chan[5] = SIDE_RIGHT;
Speaker2Chan[6] = BACK_RIGHT;
SpeakerAngle[0] = -150.0f * M_PI/180.0f;
SpeakerAngle[1] = -90.0f * M_PI/180.0f;
SpeakerAngle[2] = -30.0f * M_PI/180.0f;
SpeakerAngle[3] = 0.0f * M_PI/180.0f;
SpeakerAngle[4] = 30.0f * M_PI/180.0f;
SpeakerAngle[5] = 90.0f * M_PI/180.0f;
SpeakerAngle[6] = 150.0f * M_PI/180.0f;
SetSpeakerArrangement("layout", SpeakerAngle, Speaker2Chan, Device->NumChan);
break;
default:
assert(0);
}
if(GetConfigValueBool(NULL, "scalemix", 0))
{
ALfloat maxout = 1.0f;
for(s = 0;s < OUTPUTCHANNELS;s++)
{
ALfloat out = 0.0f;
for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
out += Device->ChannelMatrix[s2][s];
maxout = __max(maxout, out);
}
maxout = 1.0f/maxout;
for(s = 0;s < OUTPUTCHANNELS;s++)
{
for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
Device->ChannelMatrix[s2][s] *= maxout;
}
}
for(pos = 0; pos < LUT_NUM; pos++)
{
/* clear all values */
offset = OUTPUTCHANNELS * pos;
for(s = 0; s < OUTPUTCHANNELS; s++)
Device->PanningLUT[offset+s] = 0.0f;
if(Device->NumChan == 1)
{
Device->PanningLUT[offset + Speaker2Chan[0]] = 1.0f;
continue;
}
/* source angle */
Theta = aluLUTpos2Angle(pos);
/* set panning values */
for(s = 0; s < Device->NumChan - 1; s++)
{
if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
{
/* source between speaker s and speaker s+1 */
Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
(SpeakerAngle[s+1]-SpeakerAngle[s]);
Device->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
Device->PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha);
break;
}
}
if(s == Device->NumChan - 1)
{
/* source between last and first speaker */
if(Theta < SpeakerAngle[0])
Theta += 2.0f * M_PI;
Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
(2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]);
Device->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
Device->PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha);
}
}
}
static ALvoid CalcNonAttnSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
{
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
ALfloat DryGain, DryGainHF;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALint NumSends, Frequency;
ALfloat cw;
ALint i;
//Get context properties
NumSends = ALContext->Device->NumAuxSends;
Frequency = ALContext->Device->Frequency;
//Get listener properties
ListenerGain = ALContext->Listener.Gain;
//Get source properties
SourceVolume = ALSource->flGain;
MinVolume = ALSource->flMinGain;
MaxVolume = ALSource->flMaxGain;
//1. Multi-channel buffers always play "normal"
ALSource->Params.Pitch = ALSource->flPitch;
DryGain = SourceVolume;
DryGain = __min(DryGain,MaxVolume);
DryGain = __max(DryGain,MinVolume);
DryGainHF = 1.0f;
switch(ALSource->DirectFilter.type)
{
case AL_FILTER_LOWPASS:
DryGain *= ALSource->DirectFilter.Gain;
DryGainHF *= ALSource->DirectFilter.GainHF;
break;
}
ALSource->Params.DryGains[FRONT_LEFT] = DryGain * ListenerGain;
ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
ALSource->Params.DryGains[SIDE_LEFT] = DryGain * ListenerGain;
ALSource->Params.DryGains[SIDE_RIGHT] = DryGain * ListenerGain;
ALSource->Params.DryGains[BACK_LEFT] = DryGain * ListenerGain;
ALSource->Params.DryGains[BACK_RIGHT] = DryGain * ListenerGain;
ALSource->Params.DryGains[FRONT_CENTER] = DryGain * ListenerGain;
ALSource->Params.DryGains[BACK_CENTER] = DryGain * ListenerGain;
ALSource->Params.DryGains[LFE] = DryGain * ListenerGain;
for(i = 0;i < NumSends;i++)
{
WetGain[i] = SourceVolume;
WetGain[i] = __min(WetGain[i],MaxVolume);
WetGain[i] = __max(WetGain[i],MinVolume);
WetGainHF[i] = 1.0f;
switch(ALSource->Send[i].WetFilter.type)
{
case AL_FILTER_LOWPASS:
WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
break;
}
ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
}
for(i = NumSends;i < MAX_SENDS;i++)
{
ALSource->Params.WetGains[i] = 0.0f;
WetGainHF[i] = 1.0f;
}
/* Update filter coefficients. Calculations based on the I3DL2
* spec. */
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
/* We use two chained one-pole filters, so we need to take the
* square root of the squared gain, which is the same as the base
* gain. */
ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
for(i = 0;i < NumSends;i++)
{
/* We use a one-pole filter, so we need to take the squared gain */
ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
ALSource->Params.Send[i].iirFilter.coeff = a;
}
}
static ALvoid CalcSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
{
ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,OrigDist;
ALfloat Direction[3],Position[3],SourceToListener[3];
ALfloat Velocity[3],ListenerVel[3];
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound;
ALfloat Matrix[4][4];
ALfloat flAttenuation, effectiveDist;
ALfloat RoomAttenuation[MAX_SENDS];
ALfloat MetersPerUnit;
ALfloat RoomRolloff[MAX_SENDS];
ALfloat DryGainHF = 1.0f;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat DirGain, AmbientGain;
ALfloat length;
const ALfloat *SpeakerGain;
ALuint Frequency;
ALint NumSends;
ALint pos, s, i;
ALfloat cw;
for(i = 0;i < MAX_SENDS;i++)
WetGainHF[i] = 1.0f;
//Get context properties
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
DopplerVelocity = ALContext->DopplerVelocity;
flSpeedOfSound = ALContext->flSpeedOfSound;
NumSends = ALContext->Device->NumAuxSends;
Frequency = ALContext->Device->Frequency;
//Get listener properties
ListenerGain = ALContext->Listener.Gain;
MetersPerUnit = ALContext->Listener.MetersPerUnit;
memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
//Get source properties
SourceVolume = ALSource->flGain;
memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
MinVolume = ALSource->flMinGain;
MaxVolume = ALSource->flMaxGain;
MinDist = ALSource->flRefDistance;
MaxDist = ALSource->flMaxDistance;
Rolloff = ALSource->flRollOffFactor;
InnerAngle = ALSource->flInnerAngle;
OuterAngle = ALSource->flOuterAngle;
OuterGainHF = ALSource->OuterGainHF;
//1. Translate Listener to origin (convert to head relative)
if(ALSource->bHeadRelative==AL_FALSE)
{
ALfloat U[3],V[3],N[3];
// Build transform matrix
memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
aluNormalize(N); // Normalized At-vector
memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
aluNormalize(V); // Normalized Up-vector
aluCrossproduct(N, V, U); // Right-vector
aluNormalize(U); // Normalized Right-vector
Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f;
// Translate position
Position[0] -= ALContext->Listener.Position[0];
Position[1] -= ALContext->Listener.Position[1];
Position[2] -= ALContext->Listener.Position[2];
// Transform source position and direction into listener space
aluMatrixVector(Position, 1.0f, Matrix);
aluMatrixVector(Direction, 0.0f, Matrix);
// Transform source and listener velocity into listener space
aluMatrixVector(Velocity, 0.0f, Matrix);
aluMatrixVector(ListenerVel, 0.0f, Matrix);
}
else
ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
aluNormalize(SourceToListener);
aluNormalize(Direction);
//2. Calculate distance attenuation
Distance = aluSqrt(aluDotproduct(Position, Position));
OrigDist = Distance;
flAttenuation = 1.0f;
for(i = 0;i < NumSends;i++)
{
RoomAttenuation[i] = 1.0f;
RoomRolloff[i] = ALSource->RoomRolloffFactor;
if(ALSource->Send[i].Slot &&
(ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB ||
ALSource->Send[i].Slot->effect.type == AL_EFFECT_EAXREVERB))
RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
}
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
ALContext->DistanceModel)
{
case AL_INVERSE_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
case AL_INVERSE_DISTANCE:
if(MinDist > 0.0f)
{
if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
for(i = 0;i < NumSends;i++)
{
if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
}
}
break;
case AL_LINEAR_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
case AL_LINEAR_DISTANCE:
Distance=__min(Distance,MaxDist);
if(MaxDist != MinDist)
{
flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
}
break;
case AL_EXPONENT_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if(MaxDist < MinDist)
break;
//fall-through
case AL_EXPONENT_DISTANCE:
if(Distance > 0.0f && MinDist > 0.0f)
{
flAttenuation = aluPow(Distance/MinDist, -Rolloff);
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = aluPow(Distance/MinDist, -RoomRolloff[i]);
}
break;
case AL_NONE:
break;
}
// Source Gain + Attenuation
DryMix = SourceVolume * flAttenuation;
for(i = 0;i < NumSends;i++)
WetGain[i] = SourceVolume * RoomAttenuation[i];
effectiveDist = 0.0f;
if(MinDist > 0.0f)
effectiveDist = (MinDist/flAttenuation - MinDist)*MetersPerUnit;
// Distance-based air absorption
if(ALSource->AirAbsorptionFactor > 0.0f && effectiveDist > 0.0f)
{
ALfloat absorb;
// Absorption calculation is done in dB
absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
effectiveDist;
// Convert dB to linear gain before applying
absorb = aluPow(10.0f, absorb/20.0f);
DryGainHF *= absorb;
}
//3. Apply directional soundcones
Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
if(Angle >= InnerAngle && Angle <= OuterAngle)
{
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
ConeHF = (1.0f+(OuterGainHF-1.0f)*scale);
}
else if(Angle > OuterAngle)
{
ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
ConeHF = (1.0f+(OuterGainHF-1.0f));
}
else
{
ConeVolume = 1.0f;
ConeHF = 1.0f;
}
// Apply some high-frequency attenuation for sources behind the listener
// NOTE: This should be aluDotproduct({0,0,-1}, ListenerToSource), however
// that is equivalent to aluDotproduct({0,0,1}, SourceToListener), which is
// the same as SourceToListener[2]
Angle = aluAcos(SourceToListener[2]) * 180.0f/M_PI;
// Sources within the minimum distance attenuate less
if(OrigDist < MinDist)
Angle *= OrigDist/MinDist;
if(Angle > 90.0f)
{
ALfloat scale = (Angle-90.0f) / (180.1f-90.0f); // .1 to account for fp errors
ConeHF *= 1.0f - (ALContext->Device->HeadDampen*scale);
}
DryMix *= ConeVolume;
if(ALSource->DryGainHFAuto)
DryGainHF *= ConeHF;
// Clamp to Min/Max Gain
DryMix = __min(DryMix,MaxVolume);
DryMix = __max(DryMix,MinVolume);
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
{
ALSource->Params.WetGains[i] = 0.0f;
WetGainHF[i] = 1.0f;
continue;
}
if(Slot->AuxSendAuto)
{
if(ALSource->WetGainAuto)
WetGain[i] *= ConeVolume;
if(ALSource->WetGainHFAuto)
WetGainHF[i] *= ConeHF;
// Clamp to Min/Max Gain
WetGain[i] = __min(WetGain[i],MaxVolume);
WetGain[i] = __max(WetGain[i],MinVolume);
if(Slot->effect.type == AL_EFFECT_REVERB ||
Slot->effect.type == AL_EFFECT_EAXREVERB)
{
/* Apply a decay-time transformation to the wet path, based on
* the attenuation of the dry path.
*
* Using the approximate (effective) source to listener
* distance, the initial decay of the reverb effect is
* calculated and applied to the wet path.
*/
WetGain[i] *= aluPow(10.0f, effectiveDist /
(SPEEDOFSOUNDMETRESPERSEC *
Slot->effect.Reverb.DecayTime) *
-60.0 / 20.0);
WetGainHF[i] *= aluPow(10.0f,
log10(Slot->effect.Reverb.AirAbsorptionGainHF) *
ALSource->AirAbsorptionFactor * effectiveDist);
}
}
else
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects */
WetGain[i] = DryMix;
WetGainHF[i] = DryGainHF;
}
switch(ALSource->Send[i].WetFilter.type)
{
case AL_FILTER_LOWPASS:
WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
break;
}
ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
}
for(i = NumSends;i < MAX_SENDS;i++)
{
ALSource->Params.WetGains[i] = 0.0f;
WetGainHF[i] = 1.0f;
}
// Apply filter gains and filters
switch(ALSource->DirectFilter.type)
{
case AL_FILTER_LOWPASS:
DryMix *= ALSource->DirectFilter.Gain;
DryGainHF *= ALSource->DirectFilter.GainHF;
break;
}
DryMix *= ListenerGain;
// Calculate Velocity
if(DopplerFactor != 0.0f)
{
ALfloat flVSS, flVLS;
ALfloat flMaxVelocity = (DopplerVelocity * flSpeedOfSound) /
DopplerFactor;
flVSS = aluDotproduct(Velocity, SourceToListener);
if(flVSS >= flMaxVelocity)
flVSS = (flMaxVelocity - 1.0f);
else if(flVSS <= -flMaxVelocity)
flVSS = -flMaxVelocity + 1.0f;
flVLS = aluDotproduct(ListenerVel, SourceToListener);
if(flVLS >= flMaxVelocity)
flVLS = (flMaxVelocity - 1.0f);
else if(flVLS <= -flMaxVelocity)
flVLS = -flMaxVelocity + 1.0f;
ALSource->Params.Pitch = ALSource->flPitch *
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
}
else
ALSource->Params.Pitch = ALSource->flPitch;
// Use energy-preserving panning algorithm for multi-speaker playback
length = __max(OrigDist, MinDist);
if(length > 0.0f)
{
ALfloat invlen = 1.0f/length;
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
}
pos = aluCart2LUTpos(-Position[2], Position[0]);
SpeakerGain = &ALContext->Device->PanningLUT[OUTPUTCHANNELS * pos];
DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
// elevation adjustment for directional gain. this sucks, but
// has low complexity
AmbientGain = 1.0/aluSqrt(ALContext->Device->NumChan) * (1.0-DirGain);
for(s = 0; s < OUTPUTCHANNELS; s++)
{
ALfloat gain = SpeakerGain[s]*DirGain + AmbientGain;
ALSource->Params.DryGains[s] = DryMix * gain;
}
/* Update filter coefficients. */
cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
/* Spatialized sources use four chained one-pole filters, so we need to
* take the fourth root of the squared gain, which is the same as the
* square root of the base gain. */
ALSource->Params.iirFilter.coeff = lpCoeffCalc(aluSqrt(DryGainHF), cw);
for(i = 0;i < NumSends;i++)
{
/* The wet path uses two chained one-pole filters, so take the
* base gain (square root of the squared gain) */
ALSource->Params.Send[i].iirFilter.coeff = lpCoeffCalc(WetGainHF[i], cw);
}
}
static __inline ALfloat point(ALfloat val1, ALfloat val2, ALint frac)
{
return val1;
(void)val2;
(void)frac;
}
static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALint frac)
{
return val1 + ((val2-val1)*(frac * (1.0f/(1<<FRACTIONBITS))));
}
static __inline ALfloat cos_lerp(ALfloat val1, ALfloat val2, ALint frac)
{
ALfloat mult = (1.0f-cos(frac * (1.0f/(1<<FRACTIONBITS)) * M_PI)) * 0.5f;
return val1 + ((val2-val1)*mult);
}
static void MixSomeSources(ALCcontext *ALContext, float (*DryBuffer)[OUTPUTCHANNELS], ALuint SamplesToDo)
{
static float DummyBuffer[BUFFERSIZE];
ALfloat *WetBuffer[MAX_SENDS];
ALfloat DrySend[OUTPUTCHANNELS];
ALfloat dryGainStep[OUTPUTCHANNELS];
ALfloat wetGainStep[MAX_SENDS];
ALuint i, j, k, out;
ALsource *ALSource;
ALfloat value, outsamp;
ALbufferlistitem *BufferListItem;
ALint64 DataSize64,DataPos64;
FILTER *DryFilter, *WetFilter[MAX_SENDS];
ALfloat WetSend[MAX_SENDS];
ALuint rampLength;
ALboolean DuplicateStereo;
ALuint DeviceFreq;
ALint increment;
ALuint DataPosInt, DataPosFrac;
ALuint Channels, Bytes;
ALuint Frequency;
resampler_t Resampler;
ALuint BuffersPlayed;
ALfloat Pitch;
ALenum State;
if(!(ALSource=ALContext->SourceList))
return;
DuplicateStereo = ALContext->Device->DuplicateStereo;
DeviceFreq = ALContext->Device->Frequency;
rampLength = DeviceFreq * MIN_RAMP_LENGTH / 1000;
rampLength = max(rampLength, SamplesToDo);
another_source:
if(ALSource->state != AL_PLAYING)
{
if((ALSource=ALSource->next) != NULL)
goto another_source;
return;
}
j = 0;
/* Find buffer format */
Frequency = 0;
Channels = 0;
Bytes = 0;
BufferListItem = ALSource->queue;
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
Channels = aluChannelsFromFormat(ALBuffer->format);
Bytes = aluBytesFromFormat(ALBuffer->format);
Frequency = ALBuffer->frequency;
break;
}
BufferListItem = BufferListItem->next;
}
if(ALSource->NeedsUpdate)
{
//Only apply 3D calculations for mono buffers
if(Channels == 1)
CalcSourceParams(ALContext, ALSource);
else
CalcNonAttnSourceParams(ALContext, ALSource);
ALSource->NeedsUpdate = AL_FALSE;
}
/* Get source info */
Resampler = ALSource->Resampler;
State = ALSource->state;
BuffersPlayed = ALSource->BuffersPlayed;
DataPosInt = ALSource->position;
DataPosFrac = ALSource->position_fraction;
/* Compute 18.14 fixed point step */
Pitch = (ALSource->Params.Pitch*Frequency) / DeviceFreq;
if(Pitch > (float)MAX_PITCH) Pitch = (float)MAX_PITCH;
increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
if(increment <= 0) increment = (1<<FRACTIONBITS);
if(ALSource->FirstStart)
{
for(i = 0;i < OUTPUTCHANNELS;i++)
DrySend[i] = ALSource->Params.DryGains[i];
for(i = 0;i < MAX_SENDS;i++)
WetSend[i] = ALSource->Params.WetGains[i];
}
else
{
for(i = 0;i < OUTPUTCHANNELS;i++)
DrySend[i] = ALSource->DryGains[i];
for(i = 0;i < MAX_SENDS;i++)
WetSend[i] = ALSource->WetGains[i];
}
DryFilter = &ALSource->Params.iirFilter;
for(i = 0;i < MAX_SENDS;i++)
{
WetFilter[i] = &ALSource->Params.Send[i].iirFilter;
WetBuffer[i] = (ALSource->Send[i].Slot ?
ALSource->Send[i].Slot->WetBuffer :
DummyBuffer);
}
/* Get current buffer queue item */
BufferListItem = ALSource->queue;
for(i = 0;i < BuffersPlayed && BufferListItem;i++)
BufferListItem = BufferListItem->next;
while(State == AL_PLAYING && j < SamplesToDo)
{
ALuint DataSize = 0;
ALbuffer *ALBuffer;
ALfloat *Data;
ALuint BufferSize;
/* Get buffer info */
if((ALBuffer=BufferListItem->buffer) != NULL)
{
Data = ALBuffer->data;
DataSize = ALBuffer->size;
DataSize /= Channels * Bytes;
}
if(DataPosInt >= DataSize)
goto skipmix;
if(BufferListItem->next)
{
ALbuffer *NextBuf = BufferListItem->next->buffer;
if(NextBuf && NextBuf->size)
{
ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
ulExtraSamples = min(NextBuf->size, ulExtraSamples);
memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
}
}
else if(ALSource->bLooping)
{
ALbuffer *NextBuf = ALSource->queue->buffer;
if(NextBuf && NextBuf->size)
{
ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
ulExtraSamples = min(NextBuf->size, ulExtraSamples);
memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
}
}
else
memset(&Data[DataSize*Channels], 0, (BUFFER_PADDING*Channels*Bytes));
/* Compute the gain steps for each output channel */
for(i = 0;i < OUTPUTCHANNELS;i++)
dryGainStep[i] = (ALSource->Params.DryGains[i]-DrySend[i]) /
rampLength;
for(i = 0;i < MAX_SENDS;i++)
wetGainStep[i] = (ALSource->Params.WetGains[i]-WetSend[i]) /
rampLength;
/* Figure out how many samples we can mix. */
DataSize64 = DataSize;
DataSize64 <<= FRACTIONBITS;
DataPos64 = DataPosInt;
DataPos64 <<= FRACTIONBITS;
DataPos64 += DataPosFrac;
BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
BufferSize = min(BufferSize, (SamplesToDo-j));
/* Actual sample mixing loop */
k = 0;
Data += DataPosInt*Channels;
if(Channels == 1) /* Mono */
{
#define DO_MIX(resampler) do { \
while(BufferSize--) \
{ \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] += dryGainStep[i]; \
for(i = 0;i < MAX_SENDS;i++) \
WetSend[i] += wetGainStep[i]; \
\
/* First order interpolator */ \
value = (resampler)(Data[k], Data[k+1], DataPosFrac); \
\
/* Direct path final mix buffer and panning */ \
outsamp = lpFilter4P(DryFilter, 0, value); \
DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT]; \
DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT]; \
DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT]; \
DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT]; \
DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT]; \
DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT]; \
DryBuffer[j][FRONT_CENTER] += outsamp*DrySend[FRONT_CENTER]; \
DryBuffer[j][BACK_CENTER] += outsamp*DrySend[BACK_CENTER]; \
\
/* Room path final mix buffer and panning */ \
for(i = 0;i < MAX_SENDS;i++) \
{ \
outsamp = lpFilter2P(WetFilter[i], 0, value); \
WetBuffer[i][j] += outsamp*WetSend[i]; \
} \
\
DataPosFrac += increment; \
k += DataPosFrac>>FRACTIONBITS; \
DataPosFrac &= FRACTIONMASK; \
j++; \
} \
} while(0)
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
#undef DO_MIX
}
else if(Channels == 2 && DuplicateStereo) /* Stereo */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT
};
const int chans2[] = {
BACK_LEFT, SIDE_LEFT, BACK_RIGHT, SIDE_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
const ALfloat dupscaler = aluSqrt(1.0f/3.0f);
#define DO_MIX(resampler) do { \
while(BufferSize--) \
{ \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] += dryGainStep[i]; \
for(i = 0;i < MAX_SENDS;i++) \
WetSend[i] += wetGainStep[i]; \
\
for(i = 0;i < Channels;i++) \
{ \
value = (resampler)(Data[k*Channels + i],Data[(k+1)*Channels + i],\
DataPosFrac); \
outsamp = lpFilter2P(DryFilter, chans[i]*2, value) * dupscaler; \
DryBuffer[j][chans[i]] += outsamp*DrySend[chans[i]]; \
DryBuffer[j][chans2[i*2+0]] += outsamp*DrySend[chans2[i*2+0]]; \
DryBuffer[j][chans2[i*2+1]] += outsamp*DrySend[chans2[i*2+1]]; \
for(out = 0;out < MAX_SENDS;out++) \
{ \
outsamp = lpFilter1P(WetFilter[out], chans[i], value); \
WetBuffer[out][j] += outsamp*WetSend[out]*scaler; \
} \
} \
\
DataPosFrac += increment; \
k += DataPosFrac>>FRACTIONBITS; \
DataPosFrac &= FRACTIONMASK; \
j++; \
} \
} while(0)
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
#undef DO_MIX
}
else if(Channels == 2) /* Stereo */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
#define DO_MIX(resampler) do { \
while(BufferSize--) \
{ \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] += dryGainStep[i]; \
for(i = 0;i < MAX_SENDS;i++) \
WetSend[i] += wetGainStep[i]; \
\
for(i = 0;i < Channels;i++) \
{ \
value = (resampler)(Data[k*Channels + i],Data[(k+1)*Channels + i],\
DataPosFrac); \
outsamp = lpFilter2P(DryFilter, chans[i]*2, value); \
DryBuffer[j][chans[i]] += outsamp*DrySend[chans[i]]; \
for(out = 0;out < MAX_SENDS;out++) \
{ \
outsamp = lpFilter1P(WetFilter[out], chans[i], value); \
WetBuffer[out][j] += outsamp*WetSend[out]*scaler; \
} \
} \
\
DataPosFrac += increment; \
k += DataPosFrac>>FRACTIONBITS; \
DataPosFrac &= FRACTIONMASK; \
j++; \
} \
} while(0)
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
}
else if(Channels == 4) /* Quad */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
BACK_LEFT, BACK_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
}
else if(Channels == 6) /* 5.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_LEFT, BACK_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
}
else if(Channels == 7) /* 6.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_CENTER,
SIDE_LEFT, SIDE_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
}
else if(Channels == 8) /* 7.1 */
{
const int chans[] = {
FRONT_LEFT, FRONT_RIGHT,
FRONT_CENTER, LFE,
BACK_LEFT, BACK_RIGHT,
SIDE_LEFT, SIDE_RIGHT
};
const ALfloat scaler = 1.0f/Channels;
switch(Resampler)
{
case POINT_RESAMPLER:
DO_MIX(point); break;
case LINEAR_RESAMPLER:
DO_MIX(lerp); break;
case COSINE_RESAMPLER:
DO_MIX(cos_lerp); break;
case RESAMPLER_MIN:
case RESAMPLER_MAX:
break;
}
#undef DO_MIX
}
else /* Unknown? */
{
for(i = 0;i < OUTPUTCHANNELS;i++)
DrySend[i] += dryGainStep[i]*BufferSize;
for(i = 0;i < MAX_SENDS;i++)
WetSend[i] += wetGainStep[i]*BufferSize;
while(BufferSize--)
{
DataPosFrac += increment;
k += DataPosFrac>>FRACTIONBITS;
DataPosFrac &= FRACTIONMASK;
j++;
}
}
DataPosInt += k;
skipmix:
/* Handle looping sources */
if(DataPosInt >= DataSize)
{
if(BuffersPlayed < (ALSource->BuffersInQueue-1))
{
BufferListItem = BufferListItem->next;
BuffersPlayed++;
DataPosInt -= DataSize;
}
else if(ALSource->bLooping)
{
BufferListItem = ALSource->queue;
BuffersPlayed = 0;
if(ALSource->BuffersInQueue == 1)
DataPosInt %= DataSize;
else
DataPosInt -= DataSize;
}
else
{
State = AL_STOPPED;
BufferListItem = ALSource->queue;
BuffersPlayed = ALSource->BuffersInQueue;
DataPosInt = 0;
DataPosFrac = 0;
}
}
}
/* Update source info */
ALSource->state = State;
ALSource->BuffersPlayed = BuffersPlayed;
ALSource->position = DataPosInt;
ALSource->position_fraction = DataPosFrac;
ALSource->Buffer = BufferListItem->buffer;
for(i = 0;i < OUTPUTCHANNELS;i++)
ALSource->DryGains[i] = DrySend[i];
for(i = 0;i < MAX_SENDS;i++)
ALSource->WetGains[i] = WetSend[i];
ALSource->FirstStart = AL_FALSE;
if((ALSource=ALSource->next) != NULL)
goto another_source;
}
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
float (*DryBuffer)[OUTPUTCHANNELS];
ALfloat (*Matrix)[OUTPUTCHANNELS];
const ALuint *ChanMap;
ALuint SamplesToDo;
ALeffectslot *ALEffectSlot;
ALCcontext *ALContext;
ALfloat samp;
int fpuState;
ALuint i, j, c;
#if defined(HAVE_FESETROUND)
fpuState = fegetround();
fesetround(FE_TOWARDZERO);
#elif defined(HAVE__CONTROLFP)
fpuState = _controlfp(0, 0);
_controlfp(_RC_CHOP, _MCW_RC);
#else
(void)fpuState;
#endif
DryBuffer = device->DryBuffer;
while(size > 0)
{
/* Setup variables */
SamplesToDo = min(size, BUFFERSIZE);
/* Clear mixing buffer */
memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
SuspendContext(NULL);
for(c = 0;c < device->NumContexts;c++)
{
ALContext = device->Contexts[c];
SuspendContext(ALContext);
MixSomeSources(ALContext, DryBuffer, SamplesToDo);
/* effect slot processing */
ALEffectSlot = ALContext->EffectSlotList;
while(ALEffectSlot)
{
if(ALEffectSlot->EffectState)
ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
for(i = 0;i < SamplesToDo;i++)
ALEffectSlot->WetBuffer[i] = 0.0f;
ALEffectSlot = ALEffectSlot->next;
}
ProcessContext(ALContext);
}
ProcessContext(NULL);
//Post processing loop
ChanMap = device->DevChannels;
Matrix = device->ChannelMatrix;
switch(device->Format)
{
#define CHECK_WRITE_FORMAT(bits, type, func) \
case AL_FORMAT_MONO##bits: \
for(i = 0;i < SamplesToDo;i++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][FRONT_CENTER]; \
((type*)buffer)[ChanMap[FRONT_CENTER]] = (func)(samp); \
buffer = ((type*)buffer) + 1; \
} \
break; \
case AL_FORMAT_STEREO##bits: \
if(device->Bs2b) \
{ \
for(i = 0;i < SamplesToDo;i++) \
{ \
float samples[2] = { 0.0f, 0.0f }; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
{ \
samples[0] += DryBuffer[i][c]*Matrix[c][FRONT_LEFT]; \
samples[1] += DryBuffer[i][c]*Matrix[c][FRONT_RIGHT]; \
} \
bs2b_cross_feed(device->Bs2b, samples); \
((type*)buffer)[ChanMap[FRONT_LEFT]] = (func)(samples[0]);\
((type*)buffer)[ChanMap[FRONT_RIGHT]]= (func)(samples[1]);\
buffer = ((type*)buffer) + 2; \
} \
} \
else \
{ \
for(i = 0;i < SamplesToDo;i++) \
{ \
static const Channel chans[] = { \
FRONT_LEFT, FRONT_RIGHT \
}; \
for(j = 0;j < 2;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((type*)buffer)[ChanMap[chans[j]]] = (func)(samp); \
} \
buffer = ((type*)buffer) + 2; \
} \
} \
break; \
case AL_FORMAT_QUAD##bits: \
for(i = 0;i < SamplesToDo;i++) \
{ \
static const Channel chans[] = { \
FRONT_LEFT, FRONT_RIGHT, \
BACK_LEFT, BACK_RIGHT, \
}; \
for(j = 0;j < 4;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((type*)buffer)[ChanMap[chans[j]]] = (func)(samp); \
} \
buffer = ((type*)buffer) + 4; \
} \
break; \
case AL_FORMAT_51CHN##bits: \
for(i = 0;i < SamplesToDo;i++) \
{ \
static const Channel chans[] = { \
FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT, \
}; \
for(j = 0;j < 6;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((type*)buffer)[ChanMap[chans[j]]] = (func)(samp); \
} \
buffer = ((type*)buffer) + 6; \
} \
break; \
case AL_FORMAT_61CHN##bits: \
for(i = 0;i < SamplesToDo;i++) \
{ \
static const Channel chans[] = { \
FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, BACK_CENTER, \
SIDE_LEFT, SIDE_RIGHT, \
}; \
for(j = 0;j < 7;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((type*)buffer)[ChanMap[chans[j]]] = (func)(samp); \
} \
buffer = ((type*)buffer) + 7; \
} \
break; \
case AL_FORMAT_71CHN##bits: \
for(i = 0;i < SamplesToDo;i++) \
{ \
static const Channel chans[] = { \
FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT, \
SIDE_LEFT, SIDE_RIGHT \
}; \
for(j = 0;j < 8;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((type*)buffer)[ChanMap[chans[j]]] = (func)(samp); \
} \
buffer = ((type*)buffer) + 8; \
} \
break;
#define AL_FORMAT_MONO32 AL_FORMAT_MONO_FLOAT32
#define AL_FORMAT_STEREO32 AL_FORMAT_STEREO_FLOAT32
CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB)
CHECK_WRITE_FORMAT(16, ALshort, aluF2S)
CHECK_WRITE_FORMAT(32, ALfloat, aluF2F)
#undef AL_FORMAT_STEREO32
#undef AL_FORMAT_MONO32
#undef CHECK_WRITE_FORMAT
default:
break;
}
size -= SamplesToDo;
}
#if defined(HAVE_FESETROUND)
fesetround(fpuState);
#elif defined(HAVE__CONTROLFP)
_controlfp(fpuState, 0xfffff);
#endif
}
ALvoid aluHandleDisconnect(ALCdevice *device)
{
ALuint i;
SuspendContext(NULL);
for(i = 0;i < device->NumContexts;i++)
{
ALsource *source;
SuspendContext(device->Contexts[i]);
source = device->Contexts[i]->SourceList;
while(source)
{
if(source->state == AL_PLAYING)
{
source->state = AL_STOPPED;
source->BuffersPlayed = source->BuffersInQueue;
source->position = 0;
source->position_fraction = 0;
}
source = source->next;
}
ProcessContext(device->Contexts[i]);
}
device->Connected = ALC_FALSE;
ProcessContext(NULL);
}