openal-soft/Alc/effects/modulator.c
Chris Robinson ef0d4f8210 Provide (mostly) lockless updates for effect slots
Similar to the listener, separate containers are provided atomically for the
mixer thread to apply updates without needing to block, and a free-list is used
to reuse container objects.

A couple things to note. First, the lock is still used when the effect state's
deviceUpdate method is called to prevent asynchronous calls to reset the device
from interfering. This can be fixed by using the list lock in ALc.c instead.

Secondly, old effect states aren't immediately deleted when the effect type
changes (the actual type, not just its properties). This is because the mixer
thread is intended to be real-time safe, and so can't be freeing anything. They
are cleared away when updates reuse the container they were kept in, and they
don't incur any extra processing cost, but there may be cases where the memory
is kept around until the effect slot is deleted.
2016-05-12 18:41:33 -07:00

310 lines
10 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2009 by Chris Robinson.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
typedef struct ALmodulatorState {
DERIVE_FROM_TYPE(ALeffectState);
void (*Process)(ALfloat*, const ALfloat*, ALuint, const ALuint, ALuint);
ALuint index;
ALuint step;
ALfloat Gain[MAX_EFFECT_CHANNELS][MAX_OUTPUT_CHANNELS];
ALfilterState Filter[MAX_EFFECT_CHANNELS];
} ALmodulatorState;
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
static inline ALfloat Sin(ALuint index)
{
return sinf(index*(F_TAU/WAVEFORM_FRACONE) - F_PI)*0.5f + 0.5f;
}
static inline ALfloat Saw(ALuint index)
{
return (ALfloat)index / WAVEFORM_FRACONE;
}
static inline ALfloat Square(ALuint index)
{
return (ALfloat)((index >> (WAVEFORM_FRACBITS - 1)) & 1);
}
#define DECL_TEMPLATE(func) \
static void Modulate##func(ALfloat *restrict dst, const ALfloat *restrict src,\
ALuint index, const ALuint step, ALuint todo) \
{ \
ALuint i; \
for(i = 0;i < todo;i++) \
{ \
index += step; \
index &= WAVEFORM_FRACMASK; \
dst[i] = src[i] * func(index); \
} \
}
DECL_TEMPLATE(Sin)
DECL_TEMPLATE(Saw)
DECL_TEMPLATE(Square)
#undef DECL_TEMPLATE
static ALvoid ALmodulatorState_Destruct(ALmodulatorState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALmodulatorState_deviceUpdate(ALmodulatorState *UNUSED(state), ALCdevice *UNUSED(device))
{
return AL_TRUE;
}
static ALvoid ALmodulatorState_update(ALmodulatorState *state, const ALCdevice *Device, const ALeffectslot *Slot)
{
aluMatrixf matrix;
ALfloat cw, a;
ALuint i;
if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SINUSOID)
state->Process = ModulateSin;
else if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SAWTOOTH)
state->Process = ModulateSaw;
else /*if(Slot->Params.EffectProps.Modulator.Waveform == AL_RING_MODULATOR_SQUARE)*/
state->Process = ModulateSquare;
state->step = fastf2u(Slot->Params.EffectProps.Modulator.Frequency*WAVEFORM_FRACONE /
Device->Frequency);
if(state->step == 0) state->step = 1;
/* Custom filter coeffs, which match the old version instead of a low-shelf. */
cw = cosf(F_TAU * Slot->Params.EffectProps.Modulator.HighPassCutoff / Device->Frequency);
a = (2.0f-cw) - sqrtf(powf(2.0f-cw, 2.0f) - 1.0f);
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
{
state->Filter[i].a1 = -a;
state->Filter[i].a2 = 0.0f;
state->Filter[i].b1 = -a;
state->Filter[i].b2 = 0.0f;
state->Filter[i].input_gain = a;
state->Filter[i].process = ALfilterState_processC;
}
aluMatrixfSet(&matrix,
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
STATIC_CAST(ALeffectState,state)->OutBuffer = Device->FOAOut.Buffer;
STATIC_CAST(ALeffectState,state)->OutChannels = Device->FOAOut.NumChannels;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ComputeFirstOrderGains(Device->FOAOut, matrix.m[i], Slot->Params.Gain,
state->Gain[i]);
}
static ALvoid ALmodulatorState_process(ALmodulatorState *state, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
const ALuint step = state->step;
ALuint index = state->index;
ALuint base;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[2][128];
ALuint td = minu(128, SamplesToDo-base);
ALuint i, j, k;
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
{
ALfilterState_process(&state->Filter[j], temps[0], &SamplesIn[j][base], td);
state->Process(temps[1], temps[0], index, step, td);
for(k = 0;k < NumChannels;k++)
{
ALfloat gain = state->Gain[j][k];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < td;i++)
SamplesOut[k][base+i] += gain * temps[1][i];
}
}
for(i = 0;i < td;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
}
base += td;
}
state->index = index;
}
DECLARE_DEFAULT_ALLOCATORS(ALmodulatorState)
DEFINE_ALEFFECTSTATE_VTABLE(ALmodulatorState);
typedef struct ALmodulatorStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALmodulatorStateFactory;
static ALeffectState *ALmodulatorStateFactory_create(ALmodulatorStateFactory *UNUSED(factory))
{
ALmodulatorState *state;
ALuint i;
state = ALmodulatorState_New(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALmodulatorState, ALeffectState, state);
state->index = 0;
state->step = 1;
for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
ALfilterState_clear(&state->Filter[i]);
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALmodulatorStateFactory);
ALeffectStateFactory *ALmodulatorStateFactory_getFactory(void)
{
static ALmodulatorStateFactory ModulatorFactory = { { GET_VTABLE2(ALmodulatorStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ModulatorFactory);
}
void ALmodulator_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
if(!(val >= AL_RING_MODULATOR_MIN_FREQUENCY && val <= AL_RING_MODULATOR_MAX_FREQUENCY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Frequency = val;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
if(!(val >= AL_RING_MODULATOR_MIN_HIGHPASS_CUTOFF && val <= AL_RING_MODULATOR_MAX_HIGHPASS_CUTOFF))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.HighPassCutoff = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALmodulator_setParamf(effect, context, param, vals[0]);
}
void ALmodulator_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
ALmodulator_setParamf(effect, context, param, (ALfloat)val);
break;
case AL_RING_MODULATOR_WAVEFORM:
if(!(val >= AL_RING_MODULATOR_MIN_WAVEFORM && val <= AL_RING_MODULATOR_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Modulator.Waveform = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALmodulator_setParami(effect, context, param, vals[0]);
}
void ALmodulator_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = (ALint)props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = (ALint)props->Modulator.HighPassCutoff;
break;
case AL_RING_MODULATOR_WAVEFORM:
*val = props->Modulator.Waveform;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALmodulator_getParami(effect, context, param, vals);
}
void ALmodulator_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_RING_MODULATOR_FREQUENCY:
*val = props->Modulator.Frequency;
break;
case AL_RING_MODULATOR_HIGHPASS_CUTOFF:
*val = props->Modulator.HighPassCutoff;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALmodulator_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALmodulator_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALmodulator);