openal-soft/Alc/effects/flanger.c
Chris Robinson ef0d4f8210 Provide (mostly) lockless updates for effect slots
Similar to the listener, separate containers are provided atomically for the
mixer thread to apply updates without needing to block, and a free-list is used
to reuse container objects.

A couple things to note. First, the lock is still used when the effect state's
deviceUpdate method is called to prevent asynchronous calls to reset the device
from interfering. This can be fixed by using the list lock in ALc.c instead.

Secondly, old effect states aren't immediately deleted when the effect type
changes (the actual type, not just its properties). This is because the mixer
thread is intended to be real-time safe, and so can't be freeing anything. They
are cleared away when updates reuse the container they were kept in, and they
don't incur any extra processing cost, but there may be cases where the memory
is kept around until the effect slot is deleted.
2016-05-12 18:41:33 -07:00

401 lines
13 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
enum FlangerWaveForm {
FWF_Triangle = AL_FLANGER_WAVEFORM_TRIANGLE,
FWF_Sinusoid = AL_FLANGER_WAVEFORM_SINUSOID
};
typedef struct ALflangerState {
DERIVE_FROM_TYPE(ALeffectState);
ALfloat *SampleBuffer[2];
ALuint BufferLength;
ALuint offset;
ALuint lfo_range;
ALfloat lfo_scale;
ALint lfo_disp;
/* Gains for left and right sides */
ALfloat Gain[2][MAX_OUTPUT_CHANNELS];
/* effect parameters */
enum FlangerWaveForm waveform;
ALint delay;
ALfloat depth;
ALfloat feedback;
} ALflangerState;
static ALvoid ALflangerState_Destruct(ALflangerState *state)
{
free(state->SampleBuffer[0]);
state->SampleBuffer[0] = NULL;
state->SampleBuffer[1] = NULL;
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALflangerState_deviceUpdate(ALflangerState *state, ALCdevice *Device)
{
ALuint maxlen;
ALuint it;
maxlen = fastf2u(AL_FLANGER_MAX_DELAY * 3.0f * Device->Frequency) + 1;
maxlen = NextPowerOf2(maxlen);
if(maxlen != state->BufferLength)
{
void *temp;
temp = realloc(state->SampleBuffer[0], maxlen * sizeof(ALfloat) * 2);
if(!temp) return AL_FALSE;
state->SampleBuffer[0] = temp;
state->SampleBuffer[1] = state->SampleBuffer[0] + maxlen;
state->BufferLength = maxlen;
}
for(it = 0;it < state->BufferLength;it++)
{
state->SampleBuffer[0][it] = 0.0f;
state->SampleBuffer[1][it] = 0.0f;
}
return AL_TRUE;
}
static ALvoid ALflangerState_update(ALflangerState *state, const ALCdevice *Device, const ALeffectslot *Slot)
{
ALfloat frequency = (ALfloat)Device->Frequency;
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat rate;
ALint phase;
switch(Slot->Params.EffectProps.Flanger.Waveform)
{
case AL_FLANGER_WAVEFORM_TRIANGLE:
state->waveform = FWF_Triangle;
break;
case AL_FLANGER_WAVEFORM_SINUSOID:
state->waveform = FWF_Sinusoid;
break;
}
state->depth = Slot->Params.EffectProps.Flanger.Depth;
state->feedback = Slot->Params.EffectProps.Flanger.Feedback;
state->delay = fastf2i(Slot->Params.EffectProps.Flanger.Delay * frequency);
/* Gains for left and right sides */
CalcXYZCoeffs(-1.0f, 0.0f, 0.0f, 0.0f, coeffs);
ComputePanningGains(Device->Dry, coeffs, Slot->Params.Gain, state->Gain[0]);
CalcXYZCoeffs( 1.0f, 0.0f, 0.0f, 0.0f, coeffs);
ComputePanningGains(Device->Dry, coeffs, Slot->Params.Gain, state->Gain[1]);
phase = Slot->Params.EffectProps.Flanger.Phase;
rate = Slot->Params.EffectProps.Flanger.Rate;
if(!(rate > 0.0f))
{
state->lfo_scale = 0.0f;
state->lfo_range = 1;
state->lfo_disp = 0;
}
else
{
/* Calculate LFO coefficient */
state->lfo_range = fastf2u(frequency/rate + 0.5f);
switch(state->waveform)
{
case FWF_Triangle:
state->lfo_scale = 4.0f / state->lfo_range;
break;
case FWF_Sinusoid:
state->lfo_scale = F_TAU / state->lfo_range;
break;
}
/* Calculate lfo phase displacement */
state->lfo_disp = fastf2i(state->lfo_range * (phase/360.0f));
}
}
static inline void Triangle(ALint *delay_left, ALint *delay_right, ALuint offset, const ALflangerState *state)
{
ALfloat lfo_value;
lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_left = fastf2i(lfo_value) + state->delay;
offset += state->lfo_disp;
lfo_value = 2.0f - fabsf(2.0f - state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_right = fastf2i(lfo_value) + state->delay;
}
static inline void Sinusoid(ALint *delay_left, ALint *delay_right, ALuint offset, const ALflangerState *state)
{
ALfloat lfo_value;
lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_left = fastf2i(lfo_value) + state->delay;
offset += state->lfo_disp;
lfo_value = 1.0f + sinf(state->lfo_scale*(offset%state->lfo_range));
lfo_value *= state->depth * state->delay;
*delay_right = fastf2i(lfo_value) + state->delay;
}
#define DECL_TEMPLATE(Func) \
static void Process##Func(ALflangerState *state, const ALuint SamplesToDo, \
const ALfloat *restrict SamplesIn, ALfloat (*restrict out)[2]) \
{ \
const ALuint bufmask = state->BufferLength-1; \
ALfloat *restrict leftbuf = state->SampleBuffer[0]; \
ALfloat *restrict rightbuf = state->SampleBuffer[1]; \
ALuint offset = state->offset; \
const ALfloat feedback = state->feedback; \
ALuint it; \
\
for(it = 0;it < SamplesToDo;it++) \
{ \
ALint delay_left, delay_right; \
Func(&delay_left, &delay_right, offset, state); \
\
out[it][0] = leftbuf[(offset-delay_left)&bufmask]; \
leftbuf[offset&bufmask] = (out[it][0]+SamplesIn[it]) * feedback; \
\
out[it][1] = rightbuf[(offset-delay_right)&bufmask]; \
rightbuf[offset&bufmask] = (out[it][1]+SamplesIn[it]) * feedback; \
\
offset++; \
} \
state->offset = offset; \
}
DECL_TEMPLATE(Triangle)
DECL_TEMPLATE(Sinusoid)
#undef DECL_TEMPLATE
static ALvoid ALflangerState_process(ALflangerState *state, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
{
ALuint it, kt;
ALuint base;
for(base = 0;base < SamplesToDo;)
{
ALfloat temps[128][2];
ALuint td = minu(128, SamplesToDo-base);
switch(state->waveform)
{
case FWF_Triangle:
ProcessTriangle(state, td, SamplesIn[0]+base, temps);
break;
case FWF_Sinusoid:
ProcessSinusoid(state, td, SamplesIn[0]+base, temps);
break;
}
for(kt = 0;kt < NumChannels;kt++)
{
ALfloat gain = state->Gain[0][kt];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(it = 0;it < td;it++)
SamplesOut[kt][it+base] += temps[it][0] * gain;
}
gain = state->Gain[1][kt];
if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
{
for(it = 0;it < td;it++)
SamplesOut[kt][it+base] += temps[it][1] * gain;
}
}
base += td;
}
}
DECLARE_DEFAULT_ALLOCATORS(ALflangerState)
DEFINE_ALEFFECTSTATE_VTABLE(ALflangerState);
typedef struct ALflangerStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALflangerStateFactory;
ALeffectState *ALflangerStateFactory_create(ALflangerStateFactory *UNUSED(factory))
{
ALflangerState *state;
state = ALflangerState_New(sizeof(*state));
if(!state) return NULL;
SET_VTABLE2(ALflangerState, ALeffectState, state);
state->BufferLength = 0;
state->SampleBuffer[0] = NULL;
state->SampleBuffer[1] = NULL;
state->offset = 0;
state->lfo_range = 1;
state->waveform = FWF_Triangle;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALflangerStateFactory);
ALeffectStateFactory *ALflangerStateFactory_getFactory(void)
{
static ALflangerStateFactory FlangerFactory = { { GET_VTABLE2(ALflangerStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &FlangerFactory);
}
void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_WAVEFORM:
if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Waveform = val;
break;
case AL_FLANGER_PHASE:
if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Phase = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALflanger_setParami(effect, context, param, vals[0]);
}
void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_RATE:
if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Rate = val;
break;
case AL_FLANGER_DEPTH:
if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Depth = val;
break;
case AL_FLANGER_FEEDBACK:
if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Feedback = val;
break;
case AL_FLANGER_DELAY:
if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Flanger.Delay = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALflanger_setParamf(effect, context, param, vals[0]);
}
void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_WAVEFORM:
*val = props->Flanger.Waveform;
break;
case AL_FLANGER_PHASE:
*val = props->Flanger.Phase;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALflanger_getParami(effect, context, param, vals);
}
void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_RATE:
*val = props->Flanger.Rate;
break;
case AL_FLANGER_DEPTH:
*val = props->Flanger.Depth;
break;
case AL_FLANGER_FEEDBACK:
*val = props->Flanger.Feedback;
break;
case AL_FLANGER_DELAY:
*val = props->Flanger.Delay;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALflanger_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALflanger);