openal-soft/alc/bformatdec.cpp
2019-09-13 20:04:22 -07:00

204 lines
6.5 KiB
C++

#include "config.h"
#include "bformatdec.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <iterator>
#include <numeric>
#include "AL/al.h"
#include "almalloc.h"
#include "alu.h"
#include "ambdec.h"
#include "filters/splitter.h"
#include "opthelpers.h"
namespace {
constexpr ALfloat Ambi3DDecoderHFScale[MAX_AMBI_ORDER+1] = {
1.00000000e+00f, 1.00000000e+00f
};
constexpr ALfloat Ambi3DDecoderHFScale2O[MAX_AMBI_ORDER+1] = {
7.45355990e-01f, 1.00000000e+00f
};
constexpr ALfloat Ambi3DDecoderHFScale3O[MAX_AMBI_ORDER+1] = {
5.89792205e-01f, 8.79693856e-01f
};
inline auto GetDecoderHFScales(ALuint order) noexcept -> const ALfloat(&)[MAX_AMBI_ORDER+1]
{
if(order >= 3) return Ambi3DDecoderHFScale3O;
if(order == 2) return Ambi3DDecoderHFScale2O;
return Ambi3DDecoderHFScale;
}
inline auto GetAmbiScales(AmbDecScale scaletype) noexcept -> const std::array<float,MAX_AMBI_CHANNELS>&
{
if(scaletype == AmbDecScale::FuMa) return AmbiScale::FromFuMa;
if(scaletype == AmbDecScale::SN3D) return AmbiScale::FromSN3D;
return AmbiScale::FromN3D;
}
} // namespace
BFormatDec::BFormatDec(const AmbDecConf *conf, const bool allow_2band, const ALuint inchans,
const ALuint srate, const ALuint (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mDualBand = allow_2band && (conf->FreqBands == 2);
if(!mDualBand)
mSamples.resize(2);
else
{
ASSUME(inchans > 0);
mSamples.resize(inchans * 2);
mSamplesHF = mSamples.data();
mSamplesLF = mSamplesHF + inchans;
}
mNumChannels = inchans;
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+conf->Speakers.size(), 0u,
[](ALuint mask, const ALuint &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ALfloat xover_norm{conf->XOverFreq / static_cast<float>(srate)};
const bool periphonic{(conf->ChanMask&AMBI_PERIPHONIC_MASK) != 0};
const std::array<float,MAX_AMBI_CHANNELS> &coeff_scale = GetAmbiScales(conf->CoeffScale);
const size_t coeff_count{periphonic ? MAX_AMBI_CHANNELS : MAX_AMBI2D_CHANNELS};
if(!mDualBand)
{
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanmap[i]];
for(size_t j{0},k{0};j < coeff_count;j++)
{
const size_t l{periphonic ? j : AmbiIndex::From2D[j]};
if(!(conf->ChanMask&(1u<<l))) continue;
mtx[j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]);
++k;
}
}
}
else
{
mXOver[0].init(xover_norm);
std::fill(std::begin(mXOver)+1, std::end(mXOver), mXOver[0]);
const float ratio{std::pow(10.0f, conf->XOverRatio / 40.0f)};
for(size_t i{0u};i < conf->Speakers.size();i++)
{
ALfloat (&mtx)[sNumBands][MAX_AMBI_CHANNELS] = mMatrix.Dual[chanmap[i]];
for(size_t j{0},k{0};j < coeff_count;j++)
{
const size_t l{periphonic ? j : AmbiIndex::From2D[j]};
if(!(conf->ChanMask&(1u<<l))) continue;
mtx[sHFBand][j] = conf->HFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->HFOrderGain[3] :
(l>=4) ? conf->HFOrderGain[2] :
(l>=1) ? conf->HFOrderGain[1] : conf->HFOrderGain[0]) * ratio;
mtx[sLFBand][j] = conf->LFMatrix[i][k] / coeff_scale[l] *
((l>=9) ? conf->LFOrderGain[3] :
(l>=4) ? conf->LFOrderGain[2] :
(l>=1) ? conf->LFOrderGain[1] : conf->LFOrderGain[0]) / ratio;
++k;
}
}
}
}
BFormatDec::BFormatDec(const ALuint inchans, const ALsizei chancount,
const ChannelDec (&chancoeffs)[MAX_OUTPUT_CHANNELS],
const ALuint (&chanmap)[MAX_OUTPUT_CHANNELS])
{
mSamples.resize(2);
mNumChannels = inchans;
ASSUME(chancount > 0);
mEnabled = std::accumulate(std::begin(chanmap), std::begin(chanmap)+chancount, 0u,
[](ALuint mask, const ALuint &chan) noexcept -> ALuint
{ return mask | (1 << chan); }
);
const ChannelDec *incoeffs{chancoeffs};
auto set_coeffs = [this,inchans,&incoeffs](const ALuint chanidx) noexcept -> void
{
ALfloat (&mtx)[MAX_AMBI_CHANNELS] = mMatrix.Single[chanidx];
const ALfloat (&coeffs)[MAX_AMBI_CHANNELS] = *(incoeffs++);
ASSUME(inchans > 0);
std::copy_n(std::begin(coeffs), inchans, std::begin(mtx));
};
std::for_each(chanmap, chanmap+chancount, set_coeffs);
}
void BFormatDec::process(const al::span<FloatBufferLine> OutBuffer,
const FloatBufferLine *InSamples, const size_t SamplesToDo)
{
ASSUME(SamplesToDo > 0);
if(mDualBand)
{
for(ALuint i{0};i < mNumChannels;i++)
mXOver[i].process(mSamplesHF[i].data(), mSamplesLF[i].data(), InSamples[i].data(),
SamplesToDo);
ALfloat (*mixmtx)[sNumBands][MAX_AMBI_CHANNELS]{mMatrix.Dual};
ALuint enabled{mEnabled};
for(FloatBufferLine &outbuf : OutBuffer)
{
if LIKELY(enabled&1)
{
const al::span<float> outspan{outbuf.data(), SamplesToDo};
MixRowSamples(outspan, {(*mixmtx)[sHFBand], mNumChannels}, mSamplesHF->data(),
mSamplesHF->size());
MixRowSamples(outspan, {(*mixmtx)[sLFBand], mNumChannels}, mSamplesLF->data(),
mSamplesLF->size());
}
++mixmtx;
enabled >>= 1;
}
}
else
{
ALfloat (*mixmtx)[MAX_AMBI_CHANNELS]{mMatrix.Single};
ALuint enabled{mEnabled};
for(FloatBufferLine &outbuf : OutBuffer)
{
if LIKELY(enabled&1)
MixRowSamples({outbuf.data(), SamplesToDo}, {*mixmtx, mNumChannels},
InSamples->data(), InSamples->size());
++mixmtx;
enabled >>= 1;
}
}
}
std::array<ALfloat,MAX_AMBI_ORDER+1> BFormatDec::GetHFOrderScales(const ALuint in_order, const ALuint out_order) noexcept
{
std::array<ALfloat,MAX_AMBI_ORDER+1> ret{};
assert(out_order >= in_order);
const ALfloat (&target)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(out_order);
const ALfloat (&input)[MAX_AMBI_ORDER+1] = GetDecoderHFScales(in_order);
for(ALuint i{0};i < in_order+1;++i)
ret[i] = input[i] / target[i];
return ret;
}