36aebbb6ae
So any direct_channels sources and normal panned sources remain aligned, and the reported latency is accurate.
227 lines
8.1 KiB
C++
227 lines
8.1 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "uhjfilter.h"
|
|
|
|
#ifdef HAVE_SSE_INTRINSICS
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
#include "AL/al.h"
|
|
|
|
#include "alcomplex.h"
|
|
#include "alnumeric.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using complex_d = std::complex<double>;
|
|
|
|
std::array<float,Uhj2Encoder::sFilterSize> GenerateFilter()
|
|
{
|
|
/* Some notes on this filter construction.
|
|
*
|
|
* An impulse in the frequency domain is represented by a continuous series
|
|
* of +1,-1 values, with a 0 imaginary term. Consequently, that impulse
|
|
* with a +90 degree phase offset would be represented by 0s with imaginary
|
|
* terms that alternate between +1,-1. Converting that to the time domain
|
|
* results in a FIR filter that can be convolved with the incoming signal
|
|
* to apply a wide-band 90-degree phase shift.
|
|
*
|
|
* A particularly notable aspect of the time-domain filter response is that
|
|
* every other coefficient is 0. This allows doubling the effective size of
|
|
* the filter, by only storing the non-0 coefficients and double-stepping
|
|
* over the input to apply it.
|
|
*
|
|
* Additionally, the resulting filter is independent of the sample rate.
|
|
* The same filter can be applied regardless of the device's sample rate
|
|
* and achieve the same effect, although a lower rate allows the filter to
|
|
* cover more time and improve the results.
|
|
*/
|
|
constexpr complex_d c0{0.0, 1.0};
|
|
constexpr complex_d c1{0.0, -1.0};
|
|
constexpr size_t half_size{32768};
|
|
|
|
/* Generate a frequency domain impulse with a +90 degree phase offset. Keep
|
|
* the mirrored frequencies clear for converting to the time domain.
|
|
*/
|
|
auto fftBuffer = std::vector<complex_d>(half_size*2, complex_d{});
|
|
for(size_t i{0};i < half_size;i += 2)
|
|
{
|
|
fftBuffer[i ] = c0;
|
|
fftBuffer[i+1] = c1;
|
|
}
|
|
fftBuffer[half_size] = c0;
|
|
complex_fft(fftBuffer, 1.0);
|
|
|
|
/* Reverse and truncate the filter to a usable size, and store only the
|
|
* non-0 terms. Should this be windowed?
|
|
*/
|
|
std::array<float,Uhj2Encoder::sFilterSize> ret;
|
|
auto fftiter = fftBuffer.data() + half_size + (Uhj2Encoder::sFilterSize-1);
|
|
for(float &coeff : ret)
|
|
{
|
|
coeff = static_cast<float>(fftiter->real() / (half_size+1));
|
|
fftiter -= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
alignas(16) const auto PShiftCoeffs = GenerateFilter();
|
|
|
|
|
|
void allpass_process(al::span<float> dst, const float *RESTRICT src)
|
|
{
|
|
#ifdef HAVE_SSE_INTRINSICS
|
|
size_t pos{0};
|
|
if(size_t todo{dst.size()>>1})
|
|
{
|
|
do {
|
|
__m128 r04{_mm_setzero_ps()};
|
|
__m128 r14{_mm_setzero_ps()};
|
|
for(size_t j{0};j < PShiftCoeffs.size();j+=4)
|
|
{
|
|
const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])};
|
|
const __m128 s0{_mm_loadu_ps(&src[j*2])};
|
|
const __m128 s1{_mm_loadu_ps(&src[j*2 + 4])};
|
|
|
|
__m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
|
|
r04 = _mm_add_ps(r04, _mm_mul_ps(s, coeffs));
|
|
|
|
s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
|
|
r14 = _mm_add_ps(r14, _mm_mul_ps(s, coeffs));
|
|
}
|
|
r04 = _mm_add_ps(r04, _mm_shuffle_ps(r04, r04, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r04 = _mm_add_ps(r04, _mm_movehl_ps(r04, r04));
|
|
dst[pos++] += _mm_cvtss_f32(r04);
|
|
|
|
r14 = _mm_add_ps(r14, _mm_shuffle_ps(r14, r14, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r14 = _mm_add_ps(r14, _mm_movehl_ps(r14, r14));
|
|
dst[pos++] += _mm_cvtss_f32(r14);
|
|
|
|
src += 2;
|
|
} while(--todo);
|
|
}
|
|
if((dst.size()&1))
|
|
{
|
|
__m128 r4{_mm_setzero_ps()};
|
|
for(size_t j{0};j < PShiftCoeffs.size();j+=4)
|
|
{
|
|
const __m128 coeffs{_mm_load_ps(&PShiftCoeffs[j])};
|
|
/* NOTE: This could alternatively be done with two unaligned loads
|
|
* and a shuffle. Which would be better?
|
|
*/
|
|
const __m128 s{_mm_setr_ps(src[j*2], src[j*2 + 2], src[j*2 + 4], src[j*2 + 6])};
|
|
r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
|
|
}
|
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
|
|
|
dst[pos] += _mm_cvtss_f32(r4);
|
|
}
|
|
|
|
#else
|
|
|
|
for(float &output : dst)
|
|
{
|
|
float ret{0.0f};
|
|
for(size_t j{0};j < PShiftCoeffs.size();++j)
|
|
ret += src[j*2] * PShiftCoeffs[j];
|
|
|
|
output += ret;
|
|
++src;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/* NOTE: There seems to be a bit of an inconsistency in how this encoding is
|
|
* supposed to work. Some references, such as
|
|
*
|
|
* http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html
|
|
*
|
|
* specify a pre-scaling of sqrt(2) on the W channel input, while other
|
|
* references, such as
|
|
*
|
|
* https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D
|
|
* and
|
|
* https://wiki.xiph.org/Ambisonics#UHJ_format
|
|
*
|
|
* do not. The sqrt(2) scaling is in line with B-Format decoder coefficients
|
|
* which include such a scaling for the W channel input, however the original
|
|
* source for this equation is a 1985 paper by Michael Gerzon, which does not
|
|
* apparently include the scaling. Applying the extra scaling creates a louder
|
|
* result with a narrower stereo image compared to not scaling, and I don't
|
|
* know which is the intended result.
|
|
*/
|
|
|
|
void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const FloatBufferLine *InSamples, const size_t SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
float *RESTRICT left{al::assume_aligned<16>(LeftOut.data())};
|
|
float *RESTRICT right{al::assume_aligned<16>(RightOut.data())};
|
|
|
|
const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())};
|
|
const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())};
|
|
const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())};
|
|
|
|
/* S = 0.9396926*W + 0.1855740*X */
|
|
std::transform(winput, winput+SamplesToDo, xinput, mMid.begin(),
|
|
[](const float w, const float x) noexcept -> float
|
|
{ return 0.9396926f*w + 0.1855740f*x; });
|
|
|
|
/* D = 0.6554516*Y */
|
|
std::transform(yinput, yinput+SamplesToDo, mSide.begin(),
|
|
[](const float y) noexcept -> float { return 0.6554516f*y; });
|
|
|
|
/* Include any existing direct signal in the mid/side buffers. */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mMid[i] += left[i] + right[i];
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mSide[i] += left[i] - right[i];
|
|
|
|
/* Apply a delay to the non-filtered signal to align with the filter delay. */
|
|
if LIKELY(SamplesToDo >= sFilterSize)
|
|
{
|
|
auto buffer_end = mMid.begin() + SamplesToDo;
|
|
auto delay_end = std::rotate(mMid.begin(), buffer_end - sFilterSize, buffer_end);
|
|
std::swap_ranges(mMid.begin(), delay_end, mMidDelay.begin());
|
|
|
|
buffer_end = mSide.begin() + SamplesToDo;
|
|
delay_end = std::rotate(mSide.begin(), buffer_end - sFilterSize, buffer_end);
|
|
std::swap_ranges(mSide.begin(), delay_end, mSideDelay.begin());
|
|
}
|
|
else
|
|
{
|
|
auto buffer_end = mMid.begin() + SamplesToDo;
|
|
auto delay_start = std::swap_ranges(mMid.begin(), buffer_end, mMidDelay.begin());
|
|
std::rotate(mMidDelay.begin(), delay_start, mMidDelay.end());
|
|
|
|
buffer_end = mSide.begin() + SamplesToDo;
|
|
delay_start = std::swap_ranges(mSide.begin(), buffer_end, mSideDelay.begin());
|
|
std::rotate(mSideDelay.begin(), delay_start, mSideDelay.end());
|
|
}
|
|
|
|
/* D += j(-0.3420201*W + 0.5098604*X) */
|
|
auto tmpiter = std::copy(mSideHistory.cbegin(), mSideHistory.cend(), mTemp.begin());
|
|
std::transform(winput, winput+SamplesToDo, xinput, tmpiter,
|
|
[](const float w, const float x) noexcept -> float
|
|
{ return -0.3420201f*w + 0.5098604f*x; });
|
|
std::copy_n(mTemp.cbegin()+SamplesToDo, mSideHistory.size(), mSideHistory.begin());
|
|
allpass_process({mSide.data(), SamplesToDo}, mTemp.data());
|
|
|
|
/* Left = (S + D)/2.0 */
|
|
for(size_t i{0};i < SamplesToDo;i++)
|
|
left[i] = (mMid[i] + mSide[i]) * 0.5f;
|
|
/* Right = (S - D)/2.0 */
|
|
for(size_t i{0};i < SamplesToDo;i++)
|
|
right[i] = (mMid[i] - mSide[i]) * 0.5f;
|
|
}
|