164 lines
5.2 KiB
C++
164 lines
5.2 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "biquad.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
|
|
#include "opthelpers.h"
|
|
|
|
|
|
template<typename Real>
|
|
void BiquadFilterR<Real>::setParams(BiquadType type, Real f0norm, Real gain, Real rcpQ)
|
|
{
|
|
// Limit gain to -100dB
|
|
assert(gain > 0.00001f);
|
|
|
|
const Real w0{al::MathDefs<Real>::Tau() * f0norm};
|
|
const Real sin_w0{std::sin(w0)};
|
|
const Real cos_w0{std::cos(w0)};
|
|
const Real alpha{sin_w0/2.0f * rcpQ};
|
|
|
|
Real sqrtgain_alpha_2;
|
|
Real a[3]{ 1.0f, 0.0f, 0.0f };
|
|
Real b[3]{ 1.0f, 0.0f, 0.0f };
|
|
|
|
/* Calculate filter coefficients depending on filter type */
|
|
switch(type)
|
|
{
|
|
case BiquadType::HighShelf:
|
|
sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
|
|
b[0] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
|
|
b[1] = -2.0f*gain*((gain-1.0f) + (gain+1.0f)*cos_w0 );
|
|
b[2] = gain*((gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
|
|
a[0] = (gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
|
|
a[1] = 2.0f* ((gain-1.0f) - (gain+1.0f)*cos_w0 );
|
|
a[2] = (gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
|
|
break;
|
|
case BiquadType::LowShelf:
|
|
sqrtgain_alpha_2 = 2.0f * std::sqrt(gain) * alpha;
|
|
b[0] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 + sqrtgain_alpha_2);
|
|
b[1] = 2.0f*gain*((gain-1.0f) - (gain+1.0f)*cos_w0 );
|
|
b[2] = gain*((gain+1.0f) - (gain-1.0f)*cos_w0 - sqrtgain_alpha_2);
|
|
a[0] = (gain+1.0f) + (gain-1.0f)*cos_w0 + sqrtgain_alpha_2;
|
|
a[1] = -2.0f* ((gain-1.0f) + (gain+1.0f)*cos_w0 );
|
|
a[2] = (gain+1.0f) + (gain-1.0f)*cos_w0 - sqrtgain_alpha_2;
|
|
break;
|
|
case BiquadType::Peaking:
|
|
b[0] = 1.0f + alpha * gain;
|
|
b[1] = -2.0f * cos_w0;
|
|
b[2] = 1.0f - alpha * gain;
|
|
a[0] = 1.0f + alpha / gain;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha / gain;
|
|
break;
|
|
|
|
case BiquadType::LowPass:
|
|
b[0] = (1.0f - cos_w0) / 2.0f;
|
|
b[1] = 1.0f - cos_w0;
|
|
b[2] = (1.0f - cos_w0) / 2.0f;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
case BiquadType::HighPass:
|
|
b[0] = (1.0f + cos_w0) / 2.0f;
|
|
b[1] = -(1.0f + cos_w0);
|
|
b[2] = (1.0f + cos_w0) / 2.0f;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
case BiquadType::BandPass:
|
|
b[0] = alpha;
|
|
b[1] = 0.0f;
|
|
b[2] = -alpha;
|
|
a[0] = 1.0f + alpha;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha;
|
|
break;
|
|
}
|
|
|
|
mA1 = a[1] / a[0];
|
|
mA2 = a[2] / a[0];
|
|
mB0 = b[0] / a[0];
|
|
mB1 = b[1] / a[0];
|
|
mB2 = b[2] / a[0];
|
|
}
|
|
|
|
template<typename Real>
|
|
void BiquadFilterR<Real>::process(const al::span<const Real> src, Real *dst)
|
|
{
|
|
const Real b0{mB0};
|
|
const Real b1{mB1};
|
|
const Real b2{mB2};
|
|
const Real a1{mA1};
|
|
const Real a2{mA2};
|
|
Real z1{mZ1};
|
|
Real z2{mZ2};
|
|
|
|
/* Processing loop is Transposed Direct Form II. This requires less storage
|
|
* compared to Direct Form I (only two delay components, instead of a four-
|
|
* sample history; the last two inputs and outputs), and works better for
|
|
* floating-point which favors summing similarly-sized values while being
|
|
* less bothered by overflow.
|
|
*
|
|
* See: http://www.earlevel.com/main/2003/02/28/biquads/
|
|
*/
|
|
auto proc_sample = [b0,b1,b2,a1,a2,&z1,&z2](Real input) noexcept -> Real
|
|
{
|
|
const Real output{input*b0 + z1};
|
|
z1 = input*b1 - output*a1 + z2;
|
|
z2 = input*b2 - output*a2;
|
|
return output;
|
|
};
|
|
std::transform(src.cbegin(), src.cend(), dst, proc_sample);
|
|
|
|
mZ1 = z1;
|
|
mZ2 = z2;
|
|
}
|
|
|
|
template<typename Real>
|
|
void BiquadFilterR<Real>::dualProcess(BiquadFilterR &other, const al::span<const Real> src,
|
|
Real *dst)
|
|
{
|
|
const Real b00{mB0};
|
|
const Real b01{mB1};
|
|
const Real b02{mB2};
|
|
const Real a01{mA1};
|
|
const Real a02{mA2};
|
|
const Real b10{other.mB0};
|
|
const Real b11{other.mB1};
|
|
const Real b12{other.mB2};
|
|
const Real a11{other.mA1};
|
|
const Real a12{other.mA2};
|
|
Real z01{mZ1};
|
|
Real z02{mZ2};
|
|
Real z11{other.mZ1};
|
|
Real z12{other.mZ2};
|
|
|
|
auto proc_sample = [b00,b01,b02,a01,a02,b10,b11,b12,a11,a12,&z01,&z02,&z11,&z12](Real input) noexcept -> Real
|
|
{
|
|
const Real tmpout{input*b00 + z01};
|
|
z01 = input*b01 - tmpout*a01 + z02;
|
|
z02 = input*b02 - tmpout*a02;
|
|
input = tmpout;
|
|
|
|
const Real output{input*b10 + z11};
|
|
z11 = input*b11 - output*a11 + z12;
|
|
z12 = input*b12 - output*a12;
|
|
return output;
|
|
};
|
|
std::transform(src.cbegin(), src.cend(), dst, proc_sample);
|
|
|
|
mZ1 = z01;
|
|
mZ2 = z02;
|
|
other.mZ1 = z11;
|
|
other.mZ2 = z12;
|
|
}
|
|
|
|
template class BiquadFilterR<float>;
|
|
template class BiquadFilterR<double>;
|