openal-soft/Alc/mixer/mixer_c.cpp
2018-12-22 16:01:14 -08:00

189 lines
6.5 KiB
C++

#include "config.h"
#include <assert.h>
#include <limits>
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "defs.h"
static inline ALfloat do_point(const InterpState*, const ALfloat *RESTRICT vals, ALsizei) noexcept
{ return vals[0]; }
static inline ALfloat do_lerp(const InterpState*, const ALfloat *RESTRICT vals, ALsizei frac) noexcept
{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_cubic(const InterpState*, const ALfloat *RESTRICT vals, ALsizei frac) noexcept
{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
static inline ALfloat do_bsinc(const InterpState *state, const ALfloat *RESTRICT vals, ALsizei frac) noexcept
{
const ALfloat *fil, *scd, *phd, *spd;
ALsizei j_f, pi;
ALfloat pf, r;
ASSUME(state->bsinc.m > 0);
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
fil = state->bsinc.filter + state->bsinc.m*pi*4;
scd = fil + state->bsinc.m;
phd = scd + state->bsinc.m;
spd = phd + state->bsinc.m;
// Apply the scale and phase interpolated filter.
r = 0.0f;
for(j_f = 0;j_f < state->bsinc.m;j_f++)
r += (fil[j_f] + state->bsinc.sf*scd[j_f] + pf*(phd[j_f] + state->bsinc.sf*spd[j_f])) * vals[j_f];
return r;
}
const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
const ALfloat *RESTRICT src, ALsizei UNUSED(frac), ALint UNUSED(increment),
ALfloat *RESTRICT dst, ALsizei numsamples)
{
ASSUME(numsamples > 0);
#if defined(HAVE_SSE) || defined(HAVE_NEON)
/* Avoid copying the source data if it's aligned like the destination. */
if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
return src;
#endif
std::copy_n(src, numsamples, dst);
return dst;
}
template<ALfloat Sampler(const InterpState*, const ALfloat*RESTRICT, ALsizei) noexcept>
static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei numsamples)
{
ASSUME(numsamples > 0);
ASSUME(increment > 0);
ASSUME(frac >= 0);
const InterpState istate = *state;
std::generate_n<ALfloat*RESTRICT>(dst, numsamples,
[&src,&frac,istate,increment]() noexcept -> ALfloat
{
ALfloat ret{Sampler(&istate, src, frac)};
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
return ret;
}
);
return dst;
}
const ALfloat *Resample_point_C(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei numsamples)
{ return DoResample<do_point>(state, src, frac, increment, dst, numsamples); }
const ALfloat *Resample_lerp_C(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei numsamples)
{ return DoResample<do_lerp>(state, src, frac, increment, dst, numsamples); }
const ALfloat *Resample_cubic_C(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei numsamples)
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst, numsamples); }
const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei numsamples)
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, numsamples); }
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*RESTRICT Values)[2],
const ALsizei IrSize,
const ALfloat (*RESTRICT Coeffs)[2],
ALfloat left, ALfloat right)
{
ALsizei c;
for(c = 0;c < IrSize;c++)
{
const ALsizei off = (Offset+c)&HRIR_MASK;
Values[off][0] += Coeffs[c][0] * left;
Values[off][1] += Coeffs[c][1] * right;
}
}
#define MixHrtf MixHrtf_C
#define MixHrtfBlend MixHrtfBlend_C
#define MixDirectHrtf MixDirectHrtf_C
#include "hrtf_inc.cpp"
void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
ALsizei BufferSize)
{
const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
ALsizei c;
ASSUME(OutChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < OutChans;c++)
{
ALsizei pos = 0;
ALfloat gain = CurrentGains[c];
const ALfloat diff = TargetGains[c] - gain;
if(fabsf(diff) > std::numeric_limits<float>::epsilon())
{
ALsizei minsize = mini(BufferSize, Counter);
const ALfloat step = diff * delta;
ALfloat step_count = 0.0f;
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos] * (gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGains[c];
else
gain += step*step_count;
CurrentGains[c] = gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}
/* Basically the inverse of the above. Rather than one input going to multiple
* outputs (each with its own gain), it's multiple inputs (each with its own
* gain) going to one output. This applies one row (vs one column) of a matrix
* transform. And as the matrices are more or less static once set up, no
* stepping is necessary.
*/
void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*RESTRICT data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
ALsizei c, i;
ASSUME(InChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < InChans;c++)
{
const ALfloat gain = Gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < BufferSize;i++)
OutBuffer[i] += data[c][InPos+i] * gain;
}
}