openal-soft/utils/makehrtf.cpp
2019-01-24 17:05:13 -08:00

3651 lines
113 KiB
C++

/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2011-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*
* --------------------------------------------------------------------------
*
* A big thanks goes out to all those whose work done in the field of
* binaural sound synthesis using measured HRTFs makes this utility and the
* OpenAL Soft implementation possible.
*
* The algorithm for diffuse-field equalization was adapted from the work
* done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
* MIT Media Laboratory. It operates as follows:
*
* 1. Take the FFT of each HRIR and only keep the magnitude responses.
* 2. Calculate the diffuse-field power-average of all HRIRs weighted by
* their contribution to the total surface area covered by their
* measurement. This has since been modified to use coverage volume for
* multi-field HRIR data sets.
* 3. Take the diffuse-field average and limit its magnitude range.
* 4. Equalize the responses by using the inverse of the diffuse-field
* average.
* 5. Reconstruct the minimum-phase responses.
* 5. Zero the DC component.
* 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
*
* The spherical head algorithm for calculating propagation delay was adapted
* from the paper:
*
* Modeling Interaural Time Difference Assuming a Spherical Head
* Joel David Miller
* Music 150, Musical Acoustics, Stanford University
* December 2, 2001
*
* The formulae for calculating the Kaiser window metrics are from the
* the textbook:
*
* Discrete-Time Signal Processing
* Alan V. Oppenheim and Ronald W. Schafer
* Prentice-Hall Signal Processing Series
* 1999
*/
#include "config.h"
#define _UNICODE
#include <cstdio>
#include <cstdlib>
#include <cstdarg>
#include <cstddef>
#include <cstring>
#include <climits>
#include <cstdint>
#include <cctype>
#include <cmath>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_GETOPT
#include <unistd.h>
#else
#include "getopt.h"
#endif
#include <cmath>
#include <limits>
#include <vector>
#include <complex>
#include <algorithm>
#include "mysofa.h"
#include "win_main_utf8.h"
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
// The epsilon used to maintain signal stability.
#define EPSILON (1e-9)
// Constants for accessing the token reader's ring buffer.
#define TR_RING_BITS (16)
#define TR_RING_SIZE (1 << TR_RING_BITS)
#define TR_RING_MASK (TR_RING_SIZE - 1)
// The token reader's load interval in bytes.
#define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
// The maximum identifier length used when processing the data set
// definition.
#define MAX_IDENT_LEN (16)
// The maximum path length used when processing filenames.
#define MAX_PATH_LEN (256)
// The limits for the sample 'rate' metric in the data set definition and for
// resampling.
#define MIN_RATE (32000)
#define MAX_RATE (96000)
// The limits for the HRIR 'points' metric in the data set definition.
#define MIN_POINTS (16)
#define MAX_POINTS (8192)
// The limit to the number of 'distances' listed in the data set definition.
#define MAX_FD_COUNT (16)
// The limits to the number of 'azimuths' listed in the data set definition.
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
// The limits for each of the 'azimuths' listed in the data set definition.
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
// The limits for the listener's head 'radius' in the data set definition.
#define MIN_RADIUS (0.05)
#define MAX_RADIUS (0.15)
// The limits for the 'distance' from source to listener for each field in
// the definition file.
#define MIN_DISTANCE (0.05)
#define MAX_DISTANCE (2.50)
// The maximum number of channels that can be addressed for a WAVE file
// source listed in the data set definition.
#define MAX_WAVE_CHANNELS (65535)
// The limits to the byte size for a binary source listed in the definition
// file.
#define MIN_BIN_SIZE (2)
#define MAX_BIN_SIZE (4)
// The minimum number of significant bits for binary sources listed in the
// data set definition. The maximum is calculated from the byte size.
#define MIN_BIN_BITS (16)
// The limits to the number of significant bits for an ASCII source listed in
// the data set definition.
#define MIN_ASCII_BITS (16)
#define MAX_ASCII_BITS (32)
// The limits to the FFT window size override on the command line.
#define MIN_FFTSIZE (65536)
#define MAX_FFTSIZE (131072)
// The limits to the equalization range limit on the command line.
#define MIN_LIMIT (2.0)
#define MAX_LIMIT (120.0)
// The limits to the truncation window size on the command line.
#define MIN_TRUNCSIZE (16)
#define MAX_TRUNCSIZE (512)
// The limits to the custom head radius on the command line.
#define MIN_CUSTOM_RADIUS (0.05)
#define MAX_CUSTOM_RADIUS (0.15)
// The truncation window size must be a multiple of the below value to allow
// for vectorized convolution.
#define MOD_TRUNCSIZE (8)
// The defaults for the command line options.
#define DEFAULT_FFTSIZE (65536)
#define DEFAULT_EQUALIZE (1)
#define DEFAULT_SURFACE (1)
#define DEFAULT_LIMIT (24.0)
#define DEFAULT_TRUNCSIZE (32)
#define DEFAULT_HEAD_MODEL (HM_DATASET)
#define DEFAULT_CUSTOM_RADIUS (0.0)
// The four-character-codes for RIFF/RIFX WAVE file chunks.
#define FOURCC_RIFF (0x46464952) // 'RIFF'
#define FOURCC_RIFX (0x58464952) // 'RIFX'
#define FOURCC_WAVE (0x45564157) // 'WAVE'
#define FOURCC_FMT (0x20746D66) // 'fmt '
#define FOURCC_DATA (0x61746164) // 'data'
#define FOURCC_LIST (0x5453494C) // 'LIST'
#define FOURCC_WAVL (0x6C766177) // 'wavl'
#define FOURCC_SLNT (0x746E6C73) // 'slnt'
// The supported wave formats.
#define WAVE_FORMAT_PCM (0x0001)
#define WAVE_FORMAT_IEEE_FLOAT (0x0003)
#define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
// The maximum propagation delay value supported by OpenAL Soft.
#define MAX_HRTD (63.0)
// The OpenAL Soft HRTF format marker. It stands for minimum-phase head
// response protocol 02.
#define MHR_FORMAT ("MinPHR02")
// Sample and channel type enum values.
enum SampleTypeT {
ST_S16 = 0,
ST_S24 = 1
};
// Certain iterations rely on these integer enum values.
enum ChannelTypeT {
CT_NONE = -1,
CT_MONO = 0,
CT_STEREO = 1
};
// Byte order for the serialization routines.
enum ByteOrderT {
BO_NONE,
BO_LITTLE,
BO_BIG
};
// Source format for the references listed in the data set definition.
enum SourceFormatT {
SF_NONE,
SF_ASCII, // ASCII text file.
SF_BIN_LE, // Little-endian binary file.
SF_BIN_BE, // Big-endian binary file.
SF_WAVE, // RIFF/RIFX WAVE file.
SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file.
};
// Element types for the references listed in the data set definition.
enum ElementTypeT {
ET_NONE,
ET_INT, // Integer elements.
ET_FP // Floating-point elements.
};
// Head model used for calculating the impulse delays.
enum HeadModelT {
HM_NONE,
HM_DATASET, // Measure the onset from the dataset.
HM_SPHERE // Calculate the onset using a spherical head model.
};
/* Unsigned integer type. */
using uint = unsigned int;
/* Complex double type. */
using complex_d = std::complex<double>;
// Token reader state for parsing the data set definition.
struct TokenReaderT {
FILE *mFile;
const char *mName;
uint mLine;
uint mColumn;
char mRing[TR_RING_SIZE];
size_t mIn;
size_t mOut;
};
// Source reference state used when loading sources.
struct SourceRefT {
SourceFormatT mFormat;
ElementTypeT mType;
uint mSize;
int mBits;
uint mChannel;
double mAzimuth;
double mElevation;
double mRadius;
uint mSkip;
uint mOffset;
char mPath[MAX_PATH_LEN+1];
};
// Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
struct HrirAzT {
double mAzimuth{0.0};
uint mIndex{0u};
double mDelays[2]{0.0, 0.0};
double *mIrs[2]{nullptr, nullptr};
};
struct HrirEvT {
double mElevation{0.0};
uint mIrCount{0u};
uint mAzCount{0u};
HrirAzT *mAzs{nullptr};
};
struct HrirFdT {
double mDistance{0.0};
uint mIrCount{0u};
uint mEvCount{0u};
uint mEvStart{0u};
HrirEvT *mEvs{nullptr};
};
// The HRIR metrics and data set used when loading, processing, and storing
// the resulting HRTF.
struct HrirDataT {
uint mIrRate{0u};
SampleTypeT mSampleType{ST_S24};
ChannelTypeT mChannelType{CT_NONE};
uint mIrPoints{0u};
uint mFftSize{0u};
uint mIrSize{0u};
double mRadius{0.0};
uint mIrCount{0u};
uint mFdCount{0u};
std::vector<double> mHrirsBase;
std::vector<HrirEvT> mEvsBase;
std::vector<HrirAzT> mAzsBase;
std::vector<HrirFdT> mFds;
};
// The resampler metrics and FIR filter.
struct ResamplerT {
uint mP, mQ, mM, mL;
std::vector<double> mF;
};
/*****************************
*** Token reader routines ***
*****************************/
/* Whitespace is not significant. It can process tokens as identifiers, numbers
* (integer and floating-point), strings, and operators. Strings must be
* encapsulated by double-quotes and cannot span multiple lines.
*/
// Setup the reader on the given file. The filename can be NULL if no error
// output is desired.
static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
{
const char *name = nullptr;
if(filename)
{
const char *slash = strrchr(filename, '/');
if(slash)
{
const char *bslash = strrchr(slash+1, '\\');
if(bslash) name = bslash+1;
else name = slash+1;
}
else
{
const char *bslash = strrchr(filename, '\\');
if(bslash) name = bslash+1;
else name = filename;
}
}
tr->mFile = fp;
tr->mName = name;
tr->mLine = 1;
tr->mColumn = 1;
tr->mIn = 0;
tr->mOut = 0;
}
// Prime the reader's ring buffer, and return a result indicating that there
// is text to process.
static int TrLoad(TokenReaderT *tr)
{
size_t toLoad, in, count;
toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
{
// Load TR_LOAD_SIZE (or less if at the end of the file) per read.
toLoad = TR_LOAD_SIZE;
in = tr->mIn&TR_RING_MASK;
count = TR_RING_SIZE - in;
if(count < toLoad)
{
tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
}
else
tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
if(tr->mOut >= TR_RING_SIZE)
{
tr->mOut -= TR_RING_SIZE;
tr->mIn -= TR_RING_SIZE;
}
}
if(tr->mIn > tr->mOut)
return 1;
return 0;
}
// Error display routine. Only displays when the base name is not NULL.
static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
{
if(!tr->mName)
return;
fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName, line, column);
vfprintf(stderr, format, argPtr);
}
// Used to display an error at a saved line/column.
static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
{
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, line, column, format, argPtr);
va_end(argPtr);
}
// Used to display an error at the current line/column.
static void TrError(const TokenReaderT *tr, const char *format, ...)
{
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
va_end(argPtr);
}
// Skips to the next line.
static void TrSkipLine(TokenReaderT *tr)
{
char ch;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
break;
}
tr->mColumn ++;
}
}
// Skips to the next token.
static int TrSkipWhitespace(TokenReaderT *tr)
{
while(TrLoad(tr))
{
char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
if(isspace(ch))
{
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
}
else
tr->mColumn++;
}
else if(ch == '#')
TrSkipLine(tr);
else
return 1;
}
return 0;
}
// Get the line and/or column of the next token (or the end of input).
static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
{
TrSkipWhitespace(tr);
if(line) *line = tr->mLine;
if(column) *column = tr->mColumn;
}
// Checks to see if a token is (likely to be) an identifier. It does not
// display any errors and will not proceed to the next token.
static int TrIsIdent(TokenReaderT *tr)
{
if(!TrSkipWhitespace(tr))
return 0;
char ch{tr->mRing[tr->mOut&TR_RING_MASK]};
return ch == '_' || isalpha(ch);
}
// Checks to see if a token is the given operator. It does not display any
// errors and will not proceed to the next token.
static int TrIsOperator(TokenReaderT *tr, const char *op)
{
size_t out, len;
char ch;
if(!TrSkipWhitespace(tr))
return 0;
out = tr->mOut;
len = 0;
while(op[len] != '\0' && out < tr->mIn)
{
ch = tr->mRing[out&TR_RING_MASK];
if(ch != op[len]) break;
len++;
out++;
}
if(op[len] == '\0')
return 1;
return 0;
}
/* The TrRead*() routines obtain the value of a matching token type. They
* display type, form, and boundary errors and will proceed to the next
* token.
*/
// Reads and validates an identifier token.
static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '_' || isalpha(ch))
{
len = 0;
do {
if(len < maxLen)
ident[len] = ch;
len++;
tr->mOut++;
if(!TrLoad(tr))
break;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
} while(ch == '_' || isdigit(ch) || isalpha(ch));
tr->mColumn += len;
if(len < maxLen)
{
ident[len] = '\0';
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
return 0;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
return 0;
}
// Reads and validates (including bounds) an integer token.
static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
{
uint col, digis, len;
char ch, temp[64+1];
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
digis = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
return 0;
}
temp[len] = '\0';
*value = strtol(temp, nullptr, 10);
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
return 0;
}
// Reads and validates (including bounds) a float token.
static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
{
uint col, digis, len;
char ch, temp[64+1];
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
digis = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(ch == '.')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(digis > 0)
{
if(ch == 'E' || ch == 'e')
{
if(len < 64)
temp[len] = ch;
len++;
digis = 0;
tr->mOut++;
if(ch == '+' || ch == '-')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Float is too long.");
return 0;
}
temp[len] = '\0';
*value = strtod(temp, nullptr);
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
else
tr->mColumn += len;
}
TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
return 0;
}
// Reads and validates a string token.
static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch == '\"')
{
tr->mOut++;
len = 0;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
tr->mOut++;
if(ch == '\"')
break;
if(ch == '\n')
{
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
return 0;
}
if(len < maxLen)
text[len] = ch;
len++;
}
if(ch != '\"')
{
tr->mColumn += 1 + len;
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
return 0;
}
tr->mColumn += 2 + len;
if(len > maxLen)
{
TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
return 0;
}
text[len] = '\0';
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
return 0;
}
// Reads and validates the given operator.
static int TrReadOperator(TokenReaderT *tr, const char *op)
{
uint col, len;
char ch;
col = tr->mColumn;
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
len = 0;
while(op[len] != '\0' && TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TR_RING_MASK];
if(ch != op[len]) break;
len++;
tr->mOut++;
}
tr->mColumn += len;
if(op[len] == '\0')
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
return 0;
}
/* Performs a string substitution. Any case-insensitive occurrences of the
* pattern string are replaced with the replacement string. The result is
* truncated if necessary.
*/
static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
{
size_t inLen, patLen, repLen;
size_t si, di;
int truncated;
inLen = strlen(in);
patLen = strlen(pat);
repLen = strlen(rep);
si = 0;
di = 0;
truncated = 0;
while(si < inLen && di < maxLen)
{
if(patLen <= inLen-si)
{
if(strncasecmp(&in[si], pat, patLen) == 0)
{
if(repLen > maxLen-di)
{
repLen = maxLen - di;
truncated = 1;
}
strncpy(&out[di], rep, repLen);
si += patLen;
di += repLen;
}
}
out[di] = in[si];
si++;
di++;
}
if(si < inLen)
truncated = 1;
out[di] = '\0';
return !truncated;
}
/*********************
*** Math routines ***
*********************/
// Simple clamp routine.
static double Clamp(const double val, const double lower, const double upper)
{
return std::min(std::max(val, lower), upper);
}
// Performs linear interpolation.
static double Lerp(const double a, const double b, const double f)
{
return a + f * (b - a);
}
static inline uint dither_rng(uint *seed)
{
*seed = *seed * 96314165 + 907633515;
return *seed;
}
// Performs a triangular probability density function dither. The input samples
// should be normalized (-1 to +1).
static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
const int count, const int step, uint *seed)
{
static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();
for(int i{0};i < count;i++)
{
uint prn0{dither_rng(seed)};
uint prn1{dither_rng(seed)};
out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
}
}
/* Fast Fourier transform routines. The number of points must be a power of
* two.
*/
// Performs bit-reversal ordering.
static void FftArrange(const uint n, complex_d *inout)
{
// Handle in-place arrangement.
uint rk{0u};
for(uint k{0u};k < n;k++)
{
if(rk > k)
std::swap(inout[rk], inout[k]);
uint m{n};
while(rk&(m >>= 1))
rk &= ~m;
rk |= m;
}
}
// Performs the summation.
static void FftSummation(const int n, const double s, complex_d *cplx)
{
double pi;
int m, m2;
int i, k, mk;
pi = s * M_PI;
for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
{
// v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
double sm = sin(0.5 * pi / m);
auto v = complex_d{-2.0*sm*sm, -sin(pi / m)};
auto w = complex_d{1.0, 0.0};
for(i = 0;i < m;i++)
{
for(k = i;k < n;k += m2)
{
mk = k + m;
auto t = w * cplx[mk];
cplx[mk] = cplx[k] - t;
cplx[k] = cplx[k] + t;
}
w += v*w;
}
}
}
// Performs a forward FFT.
static void FftForward(const uint n, complex_d *inout)
{
FftArrange(n, inout);
FftSummation(n, 1.0, inout);
}
// Performs an inverse FFT.
static void FftInverse(const uint n, complex_d *inout)
{
FftArrange(n, inout);
FftSummation(n, -1.0, inout);
double f{1.0 / n};
for(uint i{0};i < n;i++)
inout[i] *= f;
}
/* Calculate the complex helical sequence (or discrete-time analytical signal)
* of the given input using the Hilbert transform. Given the natural logarithm
* of a signal's magnitude response, the imaginary components can be used as
* the angles for minimum-phase reconstruction.
*/
static void Hilbert(const uint n, complex_d *inout)
{
uint i;
// Handle in-place operation.
for(i = 0;i < n;i++)
inout[i].imag(0.0);
FftInverse(n, inout);
for(i = 1;i < (n+1)/2;i++)
inout[i] *= 2.0;
/* Increment i if n is even. */
i += (n&1)^1;
for(;i < n;i++)
inout[i] = complex_d{0.0, 0.0};
FftForward(n, inout);
}
/* Calculate the magnitude response of the given input. This is used in
* place of phase decomposition, since the phase residuals are discarded for
* minimum phase reconstruction. The mirrored half of the response is also
* discarded.
*/
static void MagnitudeResponse(const uint n, const complex_d *in, double *out)
{
const uint m = 1 + (n / 2);
uint i;
for(i = 0;i < m;i++)
out[i] = std::max(std::abs(in[i]), EPSILON);
}
/* Apply a range limit (in dB) to the given magnitude response. This is used
* to adjust the effects of the diffuse-field average on the equalization
* process.
*/
static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
{
double halfLim;
uint i, lower, upper;
double ave;
halfLim = limit / 2.0;
// Convert the response to dB.
for(i = 0;i < m;i++)
out[i] = 20.0 * std::log10(in[i]);
// Use six octaves to calculate the average magnitude of the signal.
lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
ave = 0.0;
for(i = lower;i <= upper;i++)
ave += out[i];
ave /= upper - lower + 1;
// Keep the response within range of the average magnitude.
for(i = 0;i < m;i++)
out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
// Convert the response back to linear magnitude.
for(i = 0;i < m;i++)
out[i] = std::pow(10.0, out[i] / 20.0);
}
/* Reconstructs the minimum-phase component for the given magnitude response
* of a signal. This is equivalent to phase recomposition, sans the missing
* residuals (which were discarded). The mirrored half of the response is
* reconstructed.
*/
static void MinimumPhase(const uint n, const double *in, complex_d *out)
{
const uint m = 1 + (n / 2);
std::vector<double> mags(n);
uint i;
for(i = 0;i < m;i++)
{
mags[i] = std::max(EPSILON, in[i]);
out[i] = complex_d{std::log(mags[i]), 0.0};
}
for(;i < n;i++)
{
mags[i] = mags[n - i];
out[i] = out[n - i];
}
Hilbert(n, out);
// Remove any DC offset the filter has.
mags[0] = EPSILON;
for(i = 0;i < n;i++)
{
auto a = std::exp(complex_d{0.0, out[i].imag()});
out[i] = complex_d{mags[i], 0.0} * a;
}
}
/***************************
*** Resampler functions ***
***************************/
/* This is the normalized cardinal sine (sinc) function.
*
* sinc(x) = { 1, x = 0
* { sin(pi x) / (pi x), otherwise.
*/
static double Sinc(const double x)
{
if(std::abs(x) < EPSILON)
return 1.0;
return std::sin(M_PI * x) / (M_PI * x);
}
/* The zero-order modified Bessel function of the first kind, used for the
* Kaiser window.
*
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
*/
static double BesselI_0(const double x)
{
double term, sum, x2, y, last_sum;
int k;
// Start at k=1 since k=0 is trivial.
term = 1.0;
sum = 1.0;
x2 = x/2.0;
k = 1;
// Let the integration converge until the term of the sum is no longer
// significant.
do {
y = x2 / k;
k++;
last_sum = sum;
term *= y * y;
sum += term;
} while(sum != last_sum);
return sum;
}
/* Calculate a Kaiser window from the given beta value and a normalized k
* [-1, 1].
*
* w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
* { 0, elsewhere.
*
* Where k can be calculated as:
*
* k = i / l, where -l <= i <= l.
*
* or:
*
* k = 2 i / M - 1, where 0 <= i <= M.
*/
static double Kaiser(const double b, const double k)
{
if(!(k >= -1.0 && k <= 1.0))
return 0.0;
return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
}
// Calculates the greatest common divisor of a and b.
static uint Gcd(uint x, uint y)
{
while(y > 0)
{
uint z{y};
y = x % y;
x = z;
}
return x;
}
/* Calculates the size (order) of the Kaiser window. Rejection is in dB and
* the transition width is normalized frequency (0.5 is nyquist).
*
* M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
* { ceil(5.79 / 2 pi f_t), r <= 21.
*
*/
static uint CalcKaiserOrder(const double rejection, const double transition)
{
double w_t = 2.0 * M_PI * transition;
if(rejection > 21.0)
return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
return static_cast<uint>(std::ceil(5.79 / w_t));
}
// Calculates the beta value of the Kaiser window. Rejection is in dB.
static double CalcKaiserBeta(const double rejection)
{
if(rejection > 50.0)
return 0.1102 * (rejection - 8.7);
if(rejection >= 21.0)
return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
(0.07886 * (rejection - 21.0));
return 0.0;
}
/* Calculates a point on the Kaiser-windowed sinc filter for the given half-
* width, beta, gain, and cutoff. The point is specified in non-normalized
* samples, from 0 to M, where M = (2 l + 1).
*
* w(k) 2 p f_t sinc(2 f_t x)
*
* x -- centered sample index (i - l)
* k -- normalized and centered window index (x / l)
* w(k) -- window function (Kaiser)
* p -- gain compensation factor when sampling
* f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
*/
static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
{
return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
}
/* This is a polyphase sinc-filtered resampler.
*
* Upsample Downsample
*
* p/q = 3/2 p/q = 3/5
*
* M-+-+-+-> M-+-+-+->
* -------------------+ ---------------------+
* p s * f f f f|f| | p s * f f f f f |
* | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
* v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
* s * f|f|f f f | s * f f|f|f f |
* 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
* --------+=+--------+ 0 * |0|0 0 0 0 |
* d . d .|d|. d . d ----------+=+--------+
* d . . . .|d|. . . .
* q->
* q-+-+-+->
*
* P_f(i,j) = q i mod p + pj
* P_s(i,j) = floor(q i / p) - j
* d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
* { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
* { 0, P_f(i,j) >= M. }
*/
// Calculate the resampling metrics and build the Kaiser-windowed sinc filter
// that's used to cut frequencies above the destination nyquist.
static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
{
double cutoff, width, beta;
uint gcd, l;
int i;
gcd = Gcd(srcRate, dstRate);
rs->mP = dstRate / gcd;
rs->mQ = srcRate / gcd;
/* The cutoff is adjusted by half the transition width, so the transition
* ends before the nyquist (0.5). Both are scaled by the downsampling
* factor.
*/
if(rs->mP > rs->mQ)
{
cutoff = 0.475 / rs->mP;
width = 0.05 / rs->mP;
}
else
{
cutoff = 0.475 / rs->mQ;
width = 0.05 / rs->mQ;
}
// A rejection of -180 dB is used for the stop band. Round up when
// calculating the left offset to avoid increasing the transition width.
l = (CalcKaiserOrder(180.0, width)+1) / 2;
beta = CalcKaiserBeta(180.0);
rs->mM = l*2 + 1;
rs->mL = l;
rs->mF.resize(rs->mM);
for(i = 0;i < (static_cast<int>(rs->mM));i++)
rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i);
}
// Perform the upsample-filter-downsample resampling operation using a
// polyphase filter implementation.
static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
{
const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
std::vector<double> workspace;
const double *f = rs->mF.data();
uint j_f, j_s;
double *work;
uint i;
if(outN == 0)
return;
// Handle in-place operation.
if(in == out)
{
workspace.resize(outN);
work = workspace.data();
}
else
work = out;
// Resample the input.
for(i = 0;i < outN;i++)
{
double r = 0.0;
// Input starts at l to compensate for the filter delay. This will
// drop any build-up from the first half of the filter.
j_f = (l + (q * i)) % p;
j_s = (l + (q * i)) / p;
while(j_f < m)
{
// Only take input when 0 <= j_s < inN. This single unsigned
// comparison catches both cases.
if(j_s < inN)
r += f[j_f] * in[j_s];
j_f += p;
j_s--;
}
work[i] = r;
}
// Clean up after in-place operation.
if(work != out)
{
for(i = 0;i < outN;i++)
out[i] = work[i];
}
}
/*************************
*** File source input ***
*************************/
// Read a binary value of the specified byte order and byte size from a file,
// storing it as a 32-bit unsigned integer.
static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32_t *out)
{
uint8_t in[4];
uint32_t accum;
uint i;
if(fread(in, 1, bytes, fp) != bytes)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
accum = 0;
switch(order)
{
case BO_LITTLE:
for(i = 0;i < bytes;i++)
accum = (accum<<8) | in[bytes - i - 1];
break;
case BO_BIG:
for(i = 0;i < bytes;i++)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
// Read a binary value of the specified byte order from a file, storing it as
// a 64-bit unsigned integer.
static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64_t *out)
{
uint8_t in[8];
uint64_t accum;
uint i;
if(fread(in, 1, 8, fp) != 8)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
accum = 0ULL;
switch(order)
{
case BO_LITTLE:
for(i = 0;i < 8;i++)
accum = (accum<<8) | in[8 - i - 1];
break;
case BO_BIG:
for(i = 0;i < 8;i++)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
/* Read a binary value of the specified type, byte order, and byte size from
* a file, converting it to a double. For integer types, the significant
* bits are used to normalize the result. The sign of bits determines
* whether they are padded toward the MSB (negative) or LSB (positive).
* Floating-point types are not normalized.
*/
static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
{
union {
uint32_t ui;
int32_t i;
float f;
} v4;
union {
uint64_t ui;
double f;
} v8;
*out = 0.0;
if(bytes > 4)
{
if(!ReadBin8(fp, filename, order, &v8.ui))
return 0;
if(type == ET_FP)
*out = v8.f;
}
else
{
if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
return 0;
if(type == ET_FP)
*out = v4.f;
else
{
if(bits > 0)
v4.ui >>= (8*bytes) - (static_cast<uint>(bits));
else
v4.ui &= (0xFFFFFFFF >> (32+bits));
if(v4.ui&static_cast<uint>(1<<(std::abs(bits)-1)))
v4.ui |= (0xFFFFFFFF << std::abs(bits));
*out = v4.i / static_cast<double>(1<<(std::abs(bits)-1));
}
}
return 1;
}
/* Read an ascii value of the specified type from a file, converting it to a
* double. For integer types, the significant bits are used to normalize the
* result. The sign of the bits should always be positive. This also skips
* up to one separator character before the element itself.
*/
static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
{
if(TrIsOperator(tr, ","))
TrReadOperator(tr, ",");
else if(TrIsOperator(tr, ":"))
TrReadOperator(tr, ":");
else if(TrIsOperator(tr, ";"))
TrReadOperator(tr, ";");
else if(TrIsOperator(tr, "|"))
TrReadOperator(tr, "|");
if(type == ET_FP)
{
if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(), out))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
}
else
{
int v;
if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
*out = v / static_cast<double>((1<<(bits-1))-1);
}
return 1;
}
// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
// the source parameters and data set metrics.
static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
{
uint32_t fourCC, chunkSize;
uint32_t format, channels, rate, dummy, block, size, bits;
chunkSize = 0;
do {
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
} while(fourCC != FOURCC_FMT);
if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
!ReadBin4(fp, src->mPath, order, 2, &channels) ||
!ReadBin4(fp, src->mPath, order, 4, &rate) ||
!ReadBin4(fp, src->mPath, order, 4, &dummy) ||
!ReadBin4(fp, src->mPath, order, 2, &block))
return 0;
block /= channels;
if(chunkSize > 14)
{
if(!ReadBin4(fp, src->mPath, order, 2, &size))
return 0;
size /= 8;
if(block > size)
size = block;
}
else
size = block;
if(format == WAVE_FORMAT_EXTENSIBLE)
{
fseek(fp, 2, SEEK_CUR);
if(!ReadBin4(fp, src->mPath, order, 2, &bits))
return 0;
if(bits == 0)
bits = 8 * size;
fseek(fp, 4, SEEK_CUR);
if(!ReadBin4(fp, src->mPath, order, 2, &format))
return 0;
fseek(fp, static_cast<long>(chunkSize - 26), SEEK_CUR);
}
else
{
bits = 8 * size;
if(chunkSize > 14)
fseek(fp, static_cast<long>(chunkSize - 16), SEEK_CUR);
else
fseek(fp, static_cast<long>(chunkSize - 14), SEEK_CUR);
}
if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
{
fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath);
return 0;
}
if(src->mChannel >= channels)
{
fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(rate != hrirRate)
{
fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(format == WAVE_FORMAT_PCM)
{
if(size < 2 || size > 4)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
return 0;
}
if(bits < 16 || bits > (8*size))
{
fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n", src->mPath);
return 0;
}
src->mType = ET_INT;
}
else
{
if(size != 4 && size != 8)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
return 0;
}
src->mType = ET_FP;
}
src->mSize = size;
src->mBits = static_cast<int>(bits);
src->mSkip = channels;
return 1;
}
// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
int pre, post, skip;
uint i;
pre = static_cast<int>(src->mSize * src->mChannel);
post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1));
skip = 0;
for(i = 0;i < n;i++)
{
skip += pre;
if(skip > 0)
fseek(fp, skip, SEEK_CUR);
if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
return 0;
skip = post;
}
if(skip > 0)
fseek(fp, skip, SEEK_CUR);
return 1;
}
// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
// doubles.
static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
uint32_t fourCC, chunkSize, listSize, count;
uint block, skip, offset, i;
double lastSample;
for(;;)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
if(fourCC == FOURCC_DATA)
{
block = src->mSize * src->mSkip;
count = chunkSize / block;
if(count < (src->mOffset + n))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
return 0;
}
fseek(fp, static_cast<long>(src->mOffset * block), SEEK_CUR);
if(!ReadWaveData(fp, src, order, n, &hrir[0]))
return 0;
return 1;
}
else if(fourCC == FOURCC_LIST)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
return 0;
chunkSize -= 4;
if(fourCC == FOURCC_WAVL)
break;
}
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
}
listSize = chunkSize;
block = src->mSize * src->mSkip;
skip = src->mOffset;
offset = 0;
lastSample = 0.0;
while(offset < n && listSize > 8)
{
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, order, 4, &chunkSize))
return 0;
listSize -= 8 + chunkSize;
if(fourCC == FOURCC_DATA)
{
count = chunkSize / block;
if(count > skip)
{
fseek(fp, static_cast<long>(skip * block), SEEK_CUR);
chunkSize -= skip * block;
count -= skip;
skip = 0;
if(count > (n - offset))
count = n - offset;
if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
return 0;
chunkSize -= count * block;
offset += count;
lastSample = hrir[offset - 1];
}
else
{
skip -= count;
count = 0;
}
}
else if(fourCC == FOURCC_SLNT)
{
if(!ReadBin4(fp, src->mPath, order, 4, &count))
return 0;
chunkSize -= 4;
if(count > skip)
{
count -= skip;
skip = 0;
if(count > (n - offset))
count = n - offset;
for(i = 0; i < count; i ++)
hrir[offset + i] = lastSample;
offset += count;
}
else
{
skip -= count;
count = 0;
}
}
if(chunkSize > 0)
fseek(fp, static_cast<long>(chunkSize), SEEK_CUR);
}
if(offset < n)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath);
return 0;
}
return 1;
}
// Load a source HRIR from an ASCII text file containing a list of elements
// separated by whitespace or common list operators (',', ';', ':', '|').
static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
{
TokenReaderT tr;
uint i, j;
double dummy;
TrSetup(fp, nullptr, &tr);
for(i = 0;i < src->mOffset;i++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
return 0;
}
for(i = 0;i < n;i++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &hrir[i]))
return 0;
for(j = 0;j < src->mSkip;j++)
{
if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast<uint>(src->mBits), &dummy))
return 0;
}
}
return 1;
}
// Load a source HRIR from a binary file.
static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
{
uint i;
fseek(fp, static_cast<long>(src->mOffset), SEEK_SET);
for(i = 0;i < n;i++)
{
if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
return 0;
if(src->mSkip > 0)
fseek(fp, static_cast<long>(src->mSkip), SEEK_CUR);
}
return 1;
}
// Load a source HRIR from a RIFF/RIFX WAVE file.
static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
uint32_t fourCC, dummy;
ByteOrderT order;
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
return 0;
if(fourCC == FOURCC_RIFF)
order = BO_LITTLE;
else if(fourCC == FOURCC_RIFX)
order = BO_BIG;
else
{
fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
return 0;
}
if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
return 0;
if(fourCC != FOURCC_WAVE)
{
fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
return 0;
}
if(!ReadWaveFormat(fp, order, hrirRate, src))
return 0;
if(!ReadWaveList(fp, src, order, n, hrir))
return 0;
return 1;
}
// Load a Spatially Oriented Format for Accoustics (SOFA) file.
static struct MYSOFA_EASY* LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n)
{
struct MYSOFA_EASY *sofa{mysofa_cache_lookup(src->mPath, (float)hrirRate)};
if(sofa) return sofa;
sofa = static_cast<MYSOFA_EASY*>(calloc(1, sizeof(*sofa)));
if(sofa == nullptr)
{
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
sofa->lookup = nullptr;
sofa->neighborhood = nullptr;
int err;
sofa->hrtf = mysofa_load(src->mPath, &err);
if(!sofa->hrtf)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Could not load source file '%s'.\n", src->mPath);
return nullptr;
}
err = mysofa_check(sofa->hrtf);
if(err != MYSOFA_OK)
/* NOTE: Some valid SOFA files are failing this check.
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Malformed source file '%s'.\n", src->mPath);
return nullptr;
}*/
fprintf(stderr, "\nWarning: Supposedly malformed source file '%s'.\n", src->mPath);
if((src->mOffset + n) > sofa->hrtf->N)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath);
return nullptr;
}
if(src->mChannel >= sofa->hrtf->R)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n", src->mPath);
return nullptr;
}
mysofa_tocartesian(sofa->hrtf);
sofa->lookup = mysofa_lookup_init(sofa->hrtf);
if(sofa->lookup == nullptr)
{
mysofa_close(sofa);
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
return mysofa_cache_store(sofa, src->mPath, (float)hrirRate);
}
// Copies the HRIR data from a particular SOFA measurement.
static void ExtractSofaHrir(const struct MYSOFA_EASY *sofa, const uint index, const uint channel, const uint offset, const uint n, double *hrir)
{
for(uint i{0u};i < n;i++)
hrir[i] = sofa->hrtf->DataIR.values[(index*sofa->hrtf->R + channel)*sofa->hrtf->N + offset + i];
}
// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA)
// file.
static int LoadSofaSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
struct MYSOFA_EASY *sofa;
float target[3];
int nearest;
float *coords;
sofa = LoadSofaFile(src, hrirRate, n);
if(sofa == nullptr)
return 0;
/* NOTE: At some point it may be benficial or necessary to consider the
various coordinate systems, listener/source orientations, and
direciontal vectors defined in the SOFA file.
*/
target[0] = src->mAzimuth;
target[1] = src->mElevation;
target[2] = src->mRadius;
mysofa_s2c(target);
nearest = mysofa_lookup(sofa->lookup, target);
if(nearest < 0)
{
fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath);
return 0;
}
coords = &sofa->hrtf->SourcePosition.values[3 * nearest];
if(std::fabs(coords[0] - target[0]) > 0.001 || std::fabs(coords[1] - target[1]) > 0.001 || std::fabs(coords[2] - target[2]) > 0.001)
{
fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n", src->mRadius, src->mElevation, src->mAzimuth, src->mPath);
target[0] = coords[0];
target[1] = coords[1];
target[2] = coords[2];
mysofa_c2s(target);
fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2], target[1], target[0]);
return 0;
}
ExtractSofaHrir(sofa, nearest, src->mChannel, src->mOffset, n, hrir);
return 1;
}
// Load a source HRIR from a supported file type.
static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
{
FILE *fp{nullptr};
if(src->mFormat != SF_SOFA)
{
if(src->mFormat == SF_ASCII)
fp = fopen(src->mPath, "r");
else
fp = fopen(src->mPath, "rb");
if(fp == nullptr)
{
fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath);
return 0;
}
}
int result;
switch(src->mFormat)
{
case SF_ASCII:
result = LoadAsciiSource(fp, src, n, hrir);
break;
case SF_BIN_LE:
result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
break;
case SF_BIN_BE:
result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
break;
case SF_WAVE:
result = LoadWaveSource(fp, src, hrirRate, n, hrir);
break;
case SF_SOFA:
result = LoadSofaSource(src, hrirRate, n, hrir);
break;
default:
result = 0;
}
if(fp) fclose(fp);
return result;
}
/***************************
*** File storage output ***
***************************/
// Write an ASCII string to a file.
static int WriteAscii(const char *out, FILE *fp, const char *filename)
{
size_t len;
len = strlen(out);
if(fwrite(out, 1, len, fp) != len)
{
fclose(fp);
fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
return 0;
}
return 1;
}
// Write a binary value of the given byte order and byte size to a file,
// loading it from a 32-bit unsigned integer.
static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32_t in, FILE *fp, const char *filename)
{
uint8_t out[4];
uint i;
switch(order)
{
case BO_LITTLE:
for(i = 0;i < bytes;i++)
out[i] = (in>>(i*8)) & 0x000000FF;
break;
case BO_BIG:
for(i = 0;i < bytes;i++)
out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
break;
default:
break;
}
if(fwrite(out, 1, bytes, fp) != bytes)
{
fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
return 0;
}
return 1;
}
// Store the OpenAL Soft HRTF data set.
static int StoreMhr(const HrirDataT *hData, const char *filename)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint n = hData->mIrPoints;
FILE *fp;
uint fi, ei, ai, i;
uint dither_seed = 22222;
if((fp=fopen(filename, "wb")) == nullptr)
{
fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename);
return 0;
}
if(!WriteAscii(MHR_FORMAT, fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 4, static_cast<uint32_t>(hData->mIrRate), fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mSampleType), fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mChannelType), fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mIrPoints), fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mFdCount), fp, filename))
return 0;
for(fi = 0;fi < hData->mFdCount;fi++)
{
if(!WriteBin4(BO_LITTLE, 2, static_cast<uint32_t>(1000.0 * hData->mFds[fi].mDistance), fp, filename))
return 0;
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mFds[fi].mEvCount), fp, filename))
return 0;
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(hData->mFds[fi].mEvs[ei].mAzCount), fp, filename))
return 0;
}
}
for(fi = 0;fi < hData->mFdCount;fi++)
{
const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
const int bps = (hData->mSampleType == ST_S16) ? 2 :
((hData->mSampleType == ST_S24) ? 3 : 0);
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
double out[2 * MAX_TRUNCSIZE];
TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
if(hData->mChannelType == CT_STEREO)
TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
for(i = 0;i < (channels * n);i++)
{
int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
if(!WriteBin4(BO_LITTLE, bps, static_cast<uint32_t>(v), fp, filename))
return 0;
}
}
}
}
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD));
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
return 0;
if(hData->mChannelType == CT_STEREO)
{
v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD));
if(!WriteBin4(BO_LITTLE, 1, static_cast<uint32_t>(v), fp, filename))
return 0;
}
}
}
}
fclose(fp);
return 1;
}
/***********************
*** HRTF processing ***
***********************/
// Calculate the onset time of an HRIR and average it with any existing
// timing for its field, elevation, azimuth, and ear.
static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
{
std::vector<double> upsampled(10 * n);
{
ResamplerT rs;
ResamplerSetup(&rs, rate, 10 * rate);
ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
}
double mag{0.0};
for(uint i{0u};i < 10*n;i++)
mag = std::max(std::abs(upsampled[i]), mag);
mag *= 0.15;
uint i{0u};
for(;i < 10*n;i++)
{
if(std::abs(upsampled[i]) >= mag)
break;
}
return Lerp(onset, static_cast<double>(i) / (10*rate), f);
}
// Calculate the magnitude response of an HRIR and average it with any
// existing responses for its field, elevation, azimuth, and ear.
static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
{
uint m = 1 + (n / 2), i;
std::vector<complex_d> h(n);
std::vector<double> r(n);
for(i = 0;i < points;i++)
h[i] = complex_d{hrir[i], 0.0};
for(;i < n;i++)
h[i] = complex_d{0.0, 0.0};
FftForward(n, h.data());
MagnitudeResponse(n, h.data(), r.data());
for(i = 0;i < m;i++)
mag[i] = Lerp(mag[i], r[i], f);
}
/* Balances the maximum HRIR magnitudes of multi-field data sets by
* independently normalizing each field in relation to the overall maximum.
* This is done to ignore distance attenuation.
*/
static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
{
double maxMags[MAX_FD_COUNT];
uint fi, ei, ai, ti, i;
double maxMag{0.0};
for(fi = 0;fi < hData->mFdCount;fi++)
{
maxMags[fi] = 0.0;
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < m;i++)
maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]);
}
}
}
maxMag = std::max(maxMags[fi], maxMag);
}
for(fi = 0;fi < hData->mFdCount;fi++)
{
maxMags[fi] /= maxMag;
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < m;i++)
azd->mIrs[ti][i] /= maxMags[fi];
}
}
}
}
}
/* Calculate the contribution of each HRIR to the diffuse-field average based
* on its coverage volume. All volumes are centered at the spherical HRIR
* coordinates and measured by extruded solid angle.
*/
static void CalculateDfWeights(const HrirDataT *hData, double *weights)
{
double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
double solidAngle, solidVolume;
uint fi, ei;
sum = 0.0;
// The head radius acts as the limit for the inner radius.
innerRa = hData->mRadius;
for(fi = 0;fi < hData->mFdCount;fi++)
{
// Each volume ends half way between progressive field measurements.
if((fi + 1) < hData->mFdCount)
outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
// The final volume has its limit extended to some practical value.
// This is done to emphasize the far-field responses in the average.
else
outerRa = 10.0f;
evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
// For each elevation, calculate the upper and lower limits of
// the patch band.
ev = hData->mFds[fi].mEvs[ei].mElevation;
lowerEv = std::max(-M_PI / 2.0, ev - evs);
upperEv = std::min(M_PI / 2.0, ev + evs);
// Calculate the surface area of the patch band.
solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv));
// Then the volume of the extruded patch band.
solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0;
// Each weight is the volume of one extruded patch.
weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount;
// Sum the total coverage volume of the HRIRs for all fields.
sum += solidAngle;
}
innerRa = outerRa;
}
for(fi = 0;fi < hData->mFdCount;fi++)
{
// Normalize the weights given the total surface coverage for all
// fields.
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
weights[(fi * MAX_EV_COUNT) + ei] /= sum;
}
}
/* Calculate the diffuse-field average from the given magnitude responses of
* the HRIR set. Weighting can be applied to compensate for the varying
* coverage of each HRIR. The final average can then be limited by the
* specified magnitude range (in positive dB; 0.0 to skip).
*/
static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
{
std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT);
uint count, ti, fi, ei, i, ai;
if(weighted)
{
// Use coverage weighting to calculate the average.
CalculateDfWeights(hData, weights.data());
}
else
{
double weight;
// If coverage weighting is not used, the weights still need to be
// averaged by the number of existing HRIRs.
count = hData->mIrCount;
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
count -= hData->mFds[fi].mEvs[ei].mAzCount;
}
weight = 1.0 / count;
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
weights[(fi * MAX_EV_COUNT) + ei] = weight;
}
}
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < m;i++)
dfa[(ti * m) + i] = 0.0;
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
// Get the weight for this HRIR's contribution.
double weight = weights[(fi * MAX_EV_COUNT) + ei];
// Add this HRIR's weighted power average to the total.
for(i = 0;i < m;i++)
dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
}
}
}
// Finish the average calculation and keep it from being too small.
for(i = 0;i < m;i++)
dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON);
// Apply a limit to the magnitude range of the diffuse-field average
// if desired.
if(limit > 0.0)
LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
}
}
// Perform diffuse-field equalization on the magnitude responses of the HRIR
// set using the given average response.
static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
{
uint ti, fi, ei, ai, i;
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < m;i++)
azd->mIrs[ti][i] /= dfa[(ti * m) + i];
}
}
}
}
}
// Perform minimum-phase reconstruction using the magnitude responses of the
// HRIR set.
static void ReconstructHrirs(const HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint n = hData->mFftSize;
uint ti, fi, ei, ai, i;
std::vector<complex_d> h(n);
uint total, count, pcdone, lastpc;
total = hData->mIrCount;
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
total -= hData->mFds[fi].mEvs[ei].mAzCount;
}
total *= channels;
count = pcdone = lastpc = 0;
printf("%3d%% done.", pcdone);
fflush(stdout);
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
MinimumPhase(n, azd->mIrs[ti], h.data());
FftInverse(n, h.data());
for(i = 0;i < hData->mIrPoints;i++)
azd->mIrs[ti][i] = h[i].real();
pcdone = ++count * 100 / total;
if(pcdone != lastpc)
{
lastpc = pcdone;
printf("\r%3d%% done.", pcdone);
fflush(stdout);
}
}
}
}
}
printf("\n");
}
// Resamples the HRIRs for use at the given sampling rate.
static void ResampleHrirs(const uint rate, HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint n = hData->mIrPoints;
uint ti, fi, ei, ai;
ResamplerT rs;
ResamplerSetup(&rs, hData->mIrRate, rate);
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
}
}
}
hData->mIrRate = rate;
}
/* Given field and elevation indices and an azimuth, calculate the indices of
* the two HRIRs that bound the coordinate along with a factor for
* calculating the continuous HRIR using interpolation.
*/
static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af)
{
double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI);
uint i = static_cast<uint>(f) % hData->mFds[fi].mEvs[ei].mAzCount;
f -= std::floor(f);
*a0 = i;
*a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount;
*af = f;
}
/* Synthesize any missing onset timings at the bottom elevations of each
* field. This just blends between slightly exaggerated known onsets (not
* an accurate model).
*/
static void SynthesizeOnsets(HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint ti, fi, oi, ai, ei, a0, a1;
double t, of, af;
for(fi = 0;fi < hData->mFdCount;fi++)
{
if(hData->mFds[fi].mEvStart <= 0)
continue;
oi = hData->mFds[fi].mEvStart;
for(ti = 0;ti < channels;ti++)
{
t = 0.0;
for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti];
hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount);
for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
{
of = static_cast<double>(ei) / hData->mFds[fi].mEvStart;
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp(
hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti],
Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti],
hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af),
of
);
}
}
}
}
}
/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
* field. Right now this just blends the lowest elevation HRIRs together and
* applies some attenuation and high frequency damping. It is a simple, if
* inaccurate model.
*/
static void SynthesizeHrirs(HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint n = hData->mIrPoints;
uint ti, fi, ai, ei, i;
double lp[4], s0, s1;
double of, b;
uint a0, a1;
double af;
for(fi = 0;fi < hData->mFdCount;fi++)
{
const uint oi = hData->mFds[fi].mEvStart;
if(oi <= 0) continue;
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < n;i++)
hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
{
for(i = 0;i < n;i++)
hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] /
hData->mFds[fi].mEvs[oi].mAzCount;
}
for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
{
of = static_cast<double>(ei) / hData->mFds[fi].mEvStart;
b = (1.0 - of) * (3.5e-6 * hData->mIrRate);
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
lp[0] = 0.0;
lp[1] = 0.0;
lp[2] = 0.0;
lp[3] = 0.0;
for(i = 0;i < n;i++)
{
s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i],
hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af);
s0 = Lerp(s0, s1, of);
lp[0] = Lerp(s0, lp[0], b);
lp[1] = Lerp(lp[0], lp[1], b);
lp[2] = Lerp(lp[1], lp[2], b);
lp[3] = Lerp(lp[2], lp[3], b);
hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
}
}
}
b = 3.5e-6 * hData->mIrRate;
lp[0] = 0.0;
lp[1] = 0.0;
lp[2] = 0.0;
lp[3] = 0.0;
for(i = 0;i < n;i++)
{
s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
lp[0] = Lerp(s0, lp[0], b);
lp[1] = Lerp(lp[0], lp[1], b);
lp[2] = Lerp(lp[1], lp[2], b);
lp[3] = Lerp(lp[2], lp[3], b);
hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
}
}
hData->mFds[fi].mEvStart = 0;
}
}
// The following routines assume a full set of HRIRs for all elevations.
// Normalize the HRIR set and slightly attenuate the result. This is done
// per-field since distance attenuation is ignored.
static void NormalizeHrirs(const HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
uint n = hData->mIrPoints;
uint ti, fi, ei, ai, i;
for(fi = 0;fi < hData->mFdCount;fi++)
{
double maxLevel = 0.0;
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < n;i++)
maxLevel = std::max(std::abs(azd->mIrs[ti][i]), maxLevel);
}
}
}
maxLevel = 1.01 * maxLevel;
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
{
for(i = 0;i < n;i++)
azd->mIrs[ti][i] /= maxLevel;
}
}
}
}
}
// Calculate the left-ear time delay using a spherical head model.
static double CalcLTD(const double ev, const double az, const double rad, const double dist)
{
double azp, dlp, l, al;
azp = std::asin(std::cos(ev) * std::sin(az));
dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
l = std::sqrt((dist*dist) - (rad*rad));
al = (0.5 * M_PI) + azp;
if(dlp > l)
dlp = l + (rad * (al - std::acos(rad / dist)));
return dlp / 343.3;
}
// Calculate the effective head-related time delays for each minimum-phase
// HRIR. This is done per-field since distance delay is ignored.
static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
double customRatio{radius / hData->mRadius};
uint ti, fi, ei, ai;
if(model == HM_SPHERE)
{
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
for(ai = 0;ai < evd->mAzCount;ai++)
{
HrirAzT *azd = &evd->mAzs[ai];
for(ti = 0;ti < channels;ti++)
azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
}
}
}
}
else if(customRatio != 1.0)
{
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
for(ai = 0;ai < evd->mAzCount;ai++)
{
HrirAzT *azd = &evd->mAzs[ai];
for(ti = 0;ti < channels;ti++)
azd->mDelays[ti] *= customRatio;
}
}
}
}
for(fi = 0;fi < hData->mFdCount;fi++)
{
double minHrtd{std::numeric_limits<double>::infinity()};
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
for(ti = 0;ti < channels;ti++)
minHrtd = std::min(azd->mDelays[ti], minHrtd);
}
}
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ti = 0;ti < channels;ti++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
}
}
}
}
// Allocate and configure dynamic HRIR structures.
static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
{
uint evTotal = 0, azTotal = 0, fi, ei, ai;
for(fi = 0;fi < fdCount;fi++)
{
evTotal += evCounts[fi];
for(ei = 0;ei < evCounts[fi];ei++)
azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
}
if(!fdCount || !evTotal || !azTotal)
return 0;
hData->mEvsBase.resize(evTotal);
hData->mAzsBase.resize(azTotal);
hData->mFds.resize(fdCount);
hData->mIrCount = azTotal;
hData->mFdCount = fdCount;
evTotal = 0;
azTotal = 0;
for(fi = 0;fi < fdCount;fi++)
{
hData->mFds[fi].mDistance = distances[fi];
hData->mFds[fi].mEvCount = evCounts[fi];
hData->mFds[fi].mEvStart = 0;
hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal];
evTotal += evCounts[fi];
for(ei = 0;ei < evCounts[fi];ei++)
{
uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
hData->mFds[fi].mIrCount += azCount;
hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
hData->mFds[fi].mEvs[ei].mIrCount += azCount;
hData->mFds[fi].mEvs[ei].mAzCount = azCount;
hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal];
for(ai = 0;ai < azCount;ai++)
{
hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr;
hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr;
}
azTotal += azCount;
}
}
return 1;
}
// Match the channel type from a given identifier.
static ChannelTypeT MatchChannelType(const char *ident)
{
if(strcasecmp(ident, "mono") == 0)
return CT_MONO;
if(strcasecmp(ident, "stereo") == 0)
return CT_STEREO;
return CT_NONE;
}
// Process the data set definition to read and validate the data set metrics.
static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
{
int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
int hasDistance = 0, hasAzimuths = 0;
char ident[MAX_IDENT_LEN+1];
uint line, col;
double fpVal;
uint points;
int intVal;
double distances[MAX_FD_COUNT];
uint fdCount = 0;
uint evCounts[MAX_FD_COUNT];
std::vector<uint> azCounts(MAX_FD_COUNT * MAX_EV_COUNT);
TrIndication(tr, &line, &col);
while(TrIsIdent(tr))
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
if(strcasecmp(ident, "rate") == 0)
{
if(hasRate)
{
TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
return 0;
hData->mIrRate = static_cast<uint>(intVal);
hasRate = 1;
}
else if(strcasecmp(ident, "type") == 0)
{
char type[MAX_IDENT_LEN+1];
if(hasType)
{
TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
hData->mChannelType = MatchChannelType(type);
if(hData->mChannelType == CT_NONE)
{
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
}
hasType = 1;
}
else if(strcasecmp(ident, "points") == 0)
{
if(hasPoints)
{
TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
return 0;
points = static_cast<uint>(intVal);
if(fftSize > 0 && points > fftSize)
{
TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
return 0;
}
if(points < truncSize)
{
TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
return 0;
}
hData->mIrPoints = points;
if(fftSize <= 0)
{
hData->mFftSize = DEFAULT_FFTSIZE;
hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
}
else
{
hData->mFftSize = fftSize;
hData->mIrSize = 1 + (fftSize / 2);
if(points > hData->mIrSize)
hData->mIrSize = points;
}
hasPoints = 1;
}
else if(strcasecmp(ident, "radius") == 0)
{
if(hasRadius)
{
TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
return 0;
hData->mRadius = fpVal;
hasRadius = 1;
}
else if(strcasecmp(ident, "distance") == 0)
{
uint count = 0;
if(hasDistance)
{
TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
for(;;)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
if(count > 0 && fpVal <= distances[count - 1])
{
TrError(tr, "Distances are not ascending.\n");
return 0;
}
distances[count++] = fpVal;
if(!TrIsOperator(tr, ","))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasDistance = 1;
}
else if(strcasecmp(ident, "azimuths") == 0)
{
uint count = 0;
if(hasAzimuths)
{
TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
evCounts[0] = 0;
for(;;)
{
if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
return 0;
azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = static_cast<uint>(intVal);
if(TrIsOperator(tr, ","))
{
if(evCounts[count] >= MAX_EV_COUNT)
{
TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
else
{
if(evCounts[count] < MIN_EV_COUNT)
{
TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
return 0;
}
if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
{
TrError(tr, "Poles are not singular for field %d.\n", count - 1);
return 0;
}
count++;
if(!TrIsOperator(tr, ";"))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
return 0;
}
evCounts[count] = 0;
TrReadOperator(tr, ";");
}
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasAzimuths = 1;
}
else
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
TrSkipWhitespace(tr);
}
if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
if(distances[0] < hData->mRadius)
{
TrError(tr, "Distance cannot start below head radius.\n");
return 0;
}
if(hData->mChannelType == CT_NONE)
hData->mChannelType = CT_MONO;
if(!PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData))
{
fprintf(stderr, "Error: Out of memory.\n");
exit(-1);
}
return 1;
}
// Parse an index triplet from the data set definition.
static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
{
int intVal;
if(hData->mFdCount > 1)
{
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFdCount) - 1, &intVal))
return 0;
*fi = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
}
else
{
*fi = 0;
}
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvCount) - 1, &intVal))
return 0;
*ei = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzCount) - 1, &intVal))
return 0;
*ai = static_cast<uint>(intVal);
return 1;
}
// Match the source format from a given identifier.
static SourceFormatT MatchSourceFormat(const char *ident)
{
if(strcasecmp(ident, "ascii") == 0)
return SF_ASCII;
if(strcasecmp(ident, "bin_le") == 0)
return SF_BIN_LE;
if(strcasecmp(ident, "bin_be") == 0)
return SF_BIN_BE;
if(strcasecmp(ident, "wave") == 0)
return SF_WAVE;
if(strcasecmp(ident, "sofa") == 0)
return SF_SOFA;
return SF_NONE;
}
// Match the source element type from a given identifier.
static ElementTypeT MatchElementType(const char *ident)
{
if(strcasecmp(ident, "int") == 0)
return ET_INT;
if(strcasecmp(ident, "fp") == 0)
return ET_FP;
return ET_NONE;
}
// Parse and validate a source reference from the data set definition.
static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
{
char ident[MAX_IDENT_LEN+1];
uint line, col;
double fpVal;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mFormat = MatchSourceFormat(ident);
if(src->mFormat == SF_NONE)
{
TrErrorAt(tr, line, col, "Expected a source format.\n");
return 0;
}
if(!TrReadOperator(tr, "("))
return 0;
if(src->mFormat == SF_SOFA)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
src->mRadius = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -90.0, 90.0, &fpVal))
return 0;
src->mElevation = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -360.0, 360.0, &fpVal))
return 0;
src->mAzimuth = fpVal;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = (uint)intVal;
src->mSkip = 0;
}
else if(src->mFormat == SF_WAVE)
{
if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = static_cast<uint>(intVal);
src->mSkip = 0;
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mType = MatchElementType(ident);
if(src->mType == ET_NONE)
{
TrErrorAt(tr, line, col, "Expected a source element type.\n");
return 0;
}
if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
{
if(!TrReadOperator(tr, ","))
return 0;
if(src->mType == ET_INT)
{
if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
return 0;
src->mSize = static_cast<uint>(intVal);
if(!TrIsOperator(tr, ","))
src->mBits = static_cast<int>(8*src->mSize);
else
{
TrReadOperator(tr, ",");
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(std::abs(intVal) < MIN_BIN_BITS || static_cast<uint>(std::abs(intVal)) > (8*src->mSize))
{
TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
return 0;
}
src->mBits = intVal;
}
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(intVal != 4 && intVal != 8)
{
TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
return 0;
}
src->mSize = static_cast<uint>(intVal);
src->mBits = 0;
}
}
else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
{
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
return 0;
src->mSize = 0;
src->mBits = intVal;
}
else
{
src->mSize = 0;
src->mBits = 0;
}
if(!TrIsOperator(tr, ";"))
src->mSkip = 0;
else
{
TrReadOperator(tr, ";");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mSkip = static_cast<uint>(intVal);
}
}
if(!TrReadOperator(tr, ")"))
return 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = static_cast<uint>(intVal);
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
return 0;
return 1;
}
// Parse and validate a SOFA source reference from the data set definition.
static int ReadSofaRef(TokenReaderT *tr, SourceRefT *src)
{
char ident[MAX_IDENT_LEN+1];
uint line, col;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
src->mFormat = MatchSourceFormat(ident);
if(src->mFormat != SF_SOFA)
{
TrErrorAt(tr, line, col, "Expected the SOFA source format.\n");
return 0;
}
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = 0;
src->mSkip = 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = (uint)intVal;
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
return 0;
return 1;
}
// Match the target ear (index) from a given identifier.
static int MatchTargetEar(const char *ident)
{
if(strcasecmp(ident, "left") == 0)
return 0;
if(strcasecmp(ident, "right") == 0)
return 1;
return -1;
}
// Process the list of sources in the data set definition.
static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
{
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
double *hrirs = hData->mHrirsBase.data();
std::vector<double> hrir(hData->mIrPoints);
uint line, col, fi, ei, ai, ti;
int count;
printf("Loading sources...");
fflush(stdout);
count = 0;
while(TrIsOperator(tr, "["))
{
double factor[2]{ 1.0, 1.0 };
TrIndication(tr, &line, &col);
TrReadOperator(tr, "[");
if(TrIsOperator(tr, "*"))
{
SourceRefT src;
struct MYSOFA_EASY *sofa;
uint si;
TrReadOperator(tr, "*");
if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
if(!ReadSofaRef(tr, &src))
return 0;
if(hData->mChannelType == CT_STEREO)
{
char type[MAX_IDENT_LEN+1];
ChannelTypeT channelType;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
channelType = MatchChannelType(type);
switch(channelType)
{
case CT_NONE:
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
case CT_MONO:
src.mChannel = 0;
break;
case CT_STEREO:
src.mChannel = 1;
break;
}
}
else
{
char type[MAX_IDENT_LEN+1];
ChannelTypeT channelType;
if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
return 0;
channelType = MatchChannelType(type);
if(channelType != CT_MONO)
{
TrErrorAt(tr, line, col, "Expected a mono channel type.\n");
return 0;
}
src.mChannel = 0;
}
sofa = LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints);
if(!sofa) return 0;
for(si = 0;si < sofa->hrtf->M;si++)
{
printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M);
fflush(stdout);
float aer[3] = {
sofa->hrtf->SourcePosition.values[3*si],
sofa->hrtf->SourcePosition.values[3*si + 1],
sofa->hrtf->SourcePosition.values[3*si + 2]
};
mysofa_c2s(aer);
if(std::fabs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
for(fi = 0;fi < hData->mFdCount;fi++)
{
double delta = aer[2] - hData->mFds[fi].mDistance;
if(std::abs(delta) < 0.001)
break;
}
if(fi >= hData->mFdCount)
continue;
double ef{(90.0 + aer[1]) * (hData->mFds[fi].mEvCount - 1) / 180.0};
ei = (int)std::round(ef);
ef = (ef - ei) * 180.0f / (hData->mFds[fi].mEvCount - 1);
if(std::abs(ef) >= 0.1)
continue;
double af{aer[0] * hData->mFds[fi].mEvs[ei].mAzCount / 360.0f};
ai = (int)std::round(af);
af = (af - ai) * 360.0f / hData->mFds[fi].mEvs[ei].mAzCount;
ai = ai % hData->mFds[fi].mEvs[ei].mAzCount;
if(std::abs(af) >= 0.1)
continue;
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
ExtractSofaHrir(sofa, si, 0, src.mOffset, hData->mIrPoints, hrir.data());
azd->mIrs[0] = &hrirs[hData->mIrSize * azd->mIndex];
if(model == HM_DATASET)
azd->mDelays[0] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[0]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[0]);
if(src.mChannel == 1)
{
ExtractSofaHrir(sofa, si, 1, src.mOffset, hData->mIrPoints, hrir.data());
azd->mIrs[1] = &hrirs[hData->mIrSize * (hData->mIrCount + azd->mIndex)];
if(model == HM_DATASET)
azd->mDelays[1] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0, azd->mDelays[1]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0, azd->mIrs[1]);
}
// TODO: Since some SOFA files contain minimum phase HRIRs,
// it would be beneficial to check for per-measurement delays
// (when available) to reconstruct the HRTDs.
}
continue;
}
if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
return 0;
if(!TrReadOperator(tr, "]"))
return 0;
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
TrErrorAt(tr, line, col, "Redefinition of source.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
for(;;)
{
SourceRefT src;
uint ti = 0;
if(!ReadSourceRef(tr, &src))
return 0;
// TODO: Would be nice to display 'x of y files', but that would
// require preparing the source refs first to get a total count
// before loading them.
++count;
printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
fflush(stdout);
if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir.data()))
return 0;
if(hData->mChannelType == CT_STEREO)
{
char ident[MAX_IDENT_LEN+1];
if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
return 0;
ti = MatchTargetEar(ident);
if(static_cast<int>(ti) < 0)
{
TrErrorAt(tr, line, col, "Expected a target ear.\n");
return 0;
}
}
azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
if(model == HM_DATASET)
azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir.data(), 1.0 / factor[ti], azd->mDelays[ti]);
AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir.data(), 1.0 / factor[ti], azd->mIrs[ti]);
factor[ti] += 1.0;
if(!TrIsOperator(tr, "+"))
break;
TrReadOperator(tr, "+");
}
if(hData->mChannelType == CT_STEREO)
{
if(azd->mIrs[0] == nullptr)
{
TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
return 0;
}
else if(azd->mIrs[1] == nullptr)
{
TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
return 0;
}
}
}
printf("\n");
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
break;
}
if(ei >= hData->mFds[fi].mEvCount)
{
TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
return 0;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0] == nullptr)
{
TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
}
}
}
for(ti = 0;ti < channels;ti++)
{
for(fi = 0;fi < hData->mFdCount;fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
}
}
}
}
if(!TrLoad(tr))
{
mysofa_cache_release_all();
return 1;
}
TrError(tr, "Errant data at end of source list.\n");
mysofa_cache_release_all();
return 0;
}
/* Parse the data set definition and process the source data, storing the
* resulting data set as desired. If the input name is NULL it will read
* from standard input.
*/
static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
{
char rateStr[8+1], expName[MAX_PATH_LEN];
TokenReaderT tr;
HrirDataT hData;
FILE *fp;
int ret;
fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
if(inName != nullptr)
{
fp = fopen(inName, "r");
if(fp == nullptr)
{
fprintf(stderr, "\nError: Could not open definition file '%s'\n", inName);
return 0;
}
TrSetup(fp, inName, &tr);
}
else
{
fp = stdin;
TrSetup(fp, "<stdin>", &tr);
}
if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
{
if(inName != nullptr)
fclose(fp);
return 0;
}
if(!ProcessSources(model, &tr, &hData))
{
if(inName)
fclose(fp);
return 0;
}
if(fp != stdin)
fclose(fp);
if(equalize)
{
uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
uint m = 1 + hData.mFftSize / 2;
std::vector<double> dfa(c * m);
if(hData.mFdCount > 1)
{
fprintf(stdout, "Balancing field magnitudes...\n");
BalanceFieldMagnitudes(&hData, c, m);
}
fprintf(stdout, "Calculating diffuse-field average...\n");
CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data());
fprintf(stdout, "Performing diffuse-field equalization...\n");
DiffuseFieldEqualize(c, m, dfa.data(), &hData);
}
fprintf(stdout, "Performing minimum phase reconstruction...\n");
ReconstructHrirs(&hData);
if(outRate != 0 && outRate != hData.mIrRate)
{
fprintf(stdout, "Resampling HRIRs...\n");
ResampleHrirs(outRate, &hData);
}
fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
hData.mIrPoints = truncSize;
fprintf(stdout, "Synthesizing missing elevations...\n");
if(model == HM_DATASET)
SynthesizeOnsets(&hData);
SynthesizeHrirs(&hData);
fprintf(stdout, "Normalizing final HRIRs...\n");
NormalizeHrirs(&hData);
fprintf(stdout, "Calculating impulse delays...\n");
CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
snprintf(rateStr, 8, "%u", hData.mIrRate);
StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
fprintf(stdout, "Creating MHR data set %s...\n", expName);
ret = StoreMhr(&hData, expName);
return ret;
}
static void PrintHelp(const char *argv0, FILE *ofile)
{
fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
fprintf(ofile, "Options:\n");
fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
fprintf(ofile, " resample the HRIRs accordingly.\n");
fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
fprintf(ofile, " -c <radius> Use a customized head radius measured to-ear in meters.\n");
fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
fprintf(ofile, " the data set sample rate.\n");
}
// Standard command line dispatch.
int main(int argc, char *argv[])
{
const char *inName = nullptr, *outName = nullptr;
uint outRate, fftSize;
int equalize, surface;
char *end = nullptr;
HeadModelT model;
uint truncSize;
double radius;
double limit;
int opt;
GET_UNICODE_ARGS(&argc, &argv);
if(argc < 2)
{
fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
PrintHelp(argv[0], stdout);
exit(EXIT_SUCCESS);
}
outName = "./oalsoft_hrtf_%r.mhr";
outRate = 0;
fftSize = 0;
equalize = DEFAULT_EQUALIZE;
surface = DEFAULT_SURFACE;
limit = DEFAULT_LIMIT;
truncSize = DEFAULT_TRUNCSIZE;
model = DEFAULT_HEAD_MODEL;
radius = DEFAULT_CUSTOM_RADIUS;
while((opt=getopt(argc, argv, "r:f:e:s:l:w:d:c:e:i:o:h")) != -1)
{
switch(opt)
{
case 'r':
outRate = strtoul(optarg, &end, 10);
if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
exit(EXIT_FAILURE);
}
break;
case 'f':
fftSize = strtoul(optarg, &end, 10);
if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
exit(EXIT_FAILURE);
}
break;
case 'e':
if(strcmp(optarg, "on") == 0)
equalize = 1;
else if(strcmp(optarg, "off") == 0)
equalize = 0;
else
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
exit(EXIT_FAILURE);
}
break;
case 's':
if(strcmp(optarg, "on") == 0)
surface = 1;
else if(strcmp(optarg, "off") == 0)
surface = 0;
else
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
exit(EXIT_FAILURE);
}
break;
case 'l':
if(strcmp(optarg, "none") == 0)
limit = 0.0;
else
{
limit = strtod(optarg, &end);
if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
exit(EXIT_FAILURE);
}
}
break;
case 'w':
truncSize = strtoul(optarg, &end, 10);
if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
exit(EXIT_FAILURE);
}
break;
case 'd':
if(strcmp(optarg, "dataset") == 0)
model = HM_DATASET;
else if(strcmp(optarg, "sphere") == 0)
model = HM_SPHERE;
else
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
exit(EXIT_FAILURE);
}
break;
case 'c':
radius = strtod(optarg, &end);
if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
{
fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
exit(EXIT_FAILURE);
}
break;
case 'i':
inName = optarg;
break;
case 'o':
outName = optarg;
break;
case 'h':
PrintHelp(argv[0], stdout);
exit(EXIT_SUCCESS);
default: /* '?' */
PrintHelp(argv[0], stderr);
exit(EXIT_FAILURE);
}
}
if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
truncSize, model, radius, outName))
return -1;
fprintf(stdout, "Operation completed.\n");
return EXIT_SUCCESS;
}