1360 lines
48 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "backends/alsa.h"
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <atomic>
#include <thread>
#include <vector>
#include <string>
#include <algorithm>
#include "alMain.h"
#include "alu.h"
#include "alconfig.h"
#include "ringbuffer.h"
#include "compat.h"
#include <alsa/asoundlib.h>
namespace {
constexpr ALCchar alsaDevice[] = "ALSA Default";
#ifdef HAVE_DYNLOAD
#define ALSA_FUNCS(MAGIC) \
MAGIC(snd_strerror); \
MAGIC(snd_pcm_open); \
MAGIC(snd_pcm_close); \
MAGIC(snd_pcm_nonblock); \
MAGIC(snd_pcm_frames_to_bytes); \
MAGIC(snd_pcm_bytes_to_frames); \
MAGIC(snd_pcm_hw_params_malloc); \
MAGIC(snd_pcm_hw_params_free); \
MAGIC(snd_pcm_hw_params_any); \
MAGIC(snd_pcm_hw_params_current); \
MAGIC(snd_pcm_hw_params_set_access); \
MAGIC(snd_pcm_hw_params_set_format); \
MAGIC(snd_pcm_hw_params_set_channels); \
MAGIC(snd_pcm_hw_params_set_periods_near); \
MAGIC(snd_pcm_hw_params_set_rate_near); \
MAGIC(snd_pcm_hw_params_set_rate); \
MAGIC(snd_pcm_hw_params_set_rate_resample); \
MAGIC(snd_pcm_hw_params_set_buffer_time_near); \
MAGIC(snd_pcm_hw_params_set_period_time_near); \
MAGIC(snd_pcm_hw_params_set_buffer_size_near); \
MAGIC(snd_pcm_hw_params_set_period_size_near); \
MAGIC(snd_pcm_hw_params_set_buffer_size_min); \
MAGIC(snd_pcm_hw_params_get_buffer_time_min); \
MAGIC(snd_pcm_hw_params_get_buffer_time_max); \
MAGIC(snd_pcm_hw_params_get_period_time_min); \
MAGIC(snd_pcm_hw_params_get_period_time_max); \
MAGIC(snd_pcm_hw_params_get_buffer_size); \
MAGIC(snd_pcm_hw_params_get_period_size); \
MAGIC(snd_pcm_hw_params_get_access); \
MAGIC(snd_pcm_hw_params_get_periods); \
MAGIC(snd_pcm_hw_params_test_format); \
MAGIC(snd_pcm_hw_params_test_channels); \
MAGIC(snd_pcm_hw_params); \
MAGIC(snd_pcm_sw_params_malloc); \
MAGIC(snd_pcm_sw_params_current); \
MAGIC(snd_pcm_sw_params_set_avail_min); \
MAGIC(snd_pcm_sw_params_set_stop_threshold); \
MAGIC(snd_pcm_sw_params); \
MAGIC(snd_pcm_sw_params_free); \
MAGIC(snd_pcm_prepare); \
MAGIC(snd_pcm_start); \
MAGIC(snd_pcm_resume); \
MAGIC(snd_pcm_reset); \
MAGIC(snd_pcm_wait); \
MAGIC(snd_pcm_delay); \
MAGIC(snd_pcm_state); \
MAGIC(snd_pcm_avail_update); \
MAGIC(snd_pcm_areas_silence); \
MAGIC(snd_pcm_mmap_begin); \
MAGIC(snd_pcm_mmap_commit); \
MAGIC(snd_pcm_readi); \
MAGIC(snd_pcm_writei); \
MAGIC(snd_pcm_drain); \
MAGIC(snd_pcm_drop); \
MAGIC(snd_pcm_recover); \
MAGIC(snd_pcm_info_malloc); \
MAGIC(snd_pcm_info_free); \
MAGIC(snd_pcm_info_set_device); \
MAGIC(snd_pcm_info_set_subdevice); \
MAGIC(snd_pcm_info_set_stream); \
MAGIC(snd_pcm_info_get_name); \
MAGIC(snd_ctl_pcm_next_device); \
MAGIC(snd_ctl_pcm_info); \
MAGIC(snd_ctl_open); \
MAGIC(snd_ctl_close); \
MAGIC(snd_ctl_card_info_malloc); \
MAGIC(snd_ctl_card_info_free); \
MAGIC(snd_ctl_card_info); \
MAGIC(snd_ctl_card_info_get_name); \
MAGIC(snd_ctl_card_info_get_id); \
MAGIC(snd_card_next); \
MAGIC(snd_config_update_free_global)
static void *alsa_handle;
#define MAKE_FUNC(f) decltype(f) * p##f
ALSA_FUNCS(MAKE_FUNC);
#undef MAKE_FUNC
#ifndef IN_IDE_PARSER
#define snd_strerror psnd_strerror
#define snd_pcm_open psnd_pcm_open
#define snd_pcm_close psnd_pcm_close
#define snd_pcm_nonblock psnd_pcm_nonblock
#define snd_pcm_frames_to_bytes psnd_pcm_frames_to_bytes
#define snd_pcm_bytes_to_frames psnd_pcm_bytes_to_frames
#define snd_pcm_hw_params_malloc psnd_pcm_hw_params_malloc
#define snd_pcm_hw_params_free psnd_pcm_hw_params_free
#define snd_pcm_hw_params_any psnd_pcm_hw_params_any
#define snd_pcm_hw_params_current psnd_pcm_hw_params_current
#define snd_pcm_hw_params_set_access psnd_pcm_hw_params_set_access
#define snd_pcm_hw_params_set_format psnd_pcm_hw_params_set_format
#define snd_pcm_hw_params_set_channels psnd_pcm_hw_params_set_channels
#define snd_pcm_hw_params_set_periods_near psnd_pcm_hw_params_set_periods_near
#define snd_pcm_hw_params_set_rate_near psnd_pcm_hw_params_set_rate_near
#define snd_pcm_hw_params_set_rate psnd_pcm_hw_params_set_rate
#define snd_pcm_hw_params_set_rate_resample psnd_pcm_hw_params_set_rate_resample
#define snd_pcm_hw_params_set_buffer_time_near psnd_pcm_hw_params_set_buffer_time_near
#define snd_pcm_hw_params_set_period_time_near psnd_pcm_hw_params_set_period_time_near
#define snd_pcm_hw_params_set_buffer_size_near psnd_pcm_hw_params_set_buffer_size_near
#define snd_pcm_hw_params_set_period_size_near psnd_pcm_hw_params_set_period_size_near
#define snd_pcm_hw_params_set_buffer_size_min psnd_pcm_hw_params_set_buffer_size_min
#define snd_pcm_hw_params_get_buffer_time_min psnd_pcm_hw_params_get_buffer_time_min
#define snd_pcm_hw_params_get_buffer_time_max psnd_pcm_hw_params_get_buffer_time_max
#define snd_pcm_hw_params_get_period_time_min psnd_pcm_hw_params_get_period_time_min
#define snd_pcm_hw_params_get_period_time_max psnd_pcm_hw_params_get_period_time_max
#define snd_pcm_hw_params_get_buffer_size psnd_pcm_hw_params_get_buffer_size
#define snd_pcm_hw_params_get_period_size psnd_pcm_hw_params_get_period_size
#define snd_pcm_hw_params_get_access psnd_pcm_hw_params_get_access
#define snd_pcm_hw_params_get_periods psnd_pcm_hw_params_get_periods
#define snd_pcm_hw_params_test_format psnd_pcm_hw_params_test_format
#define snd_pcm_hw_params_test_channels psnd_pcm_hw_params_test_channels
#define snd_pcm_hw_params psnd_pcm_hw_params
#define snd_pcm_sw_params_malloc psnd_pcm_sw_params_malloc
#define snd_pcm_sw_params_current psnd_pcm_sw_params_current
#define snd_pcm_sw_params_set_avail_min psnd_pcm_sw_params_set_avail_min
#define snd_pcm_sw_params_set_stop_threshold psnd_pcm_sw_params_set_stop_threshold
#define snd_pcm_sw_params psnd_pcm_sw_params
#define snd_pcm_sw_params_free psnd_pcm_sw_params_free
#define snd_pcm_prepare psnd_pcm_prepare
#define snd_pcm_start psnd_pcm_start
#define snd_pcm_resume psnd_pcm_resume
#define snd_pcm_reset psnd_pcm_reset
#define snd_pcm_wait psnd_pcm_wait
#define snd_pcm_delay psnd_pcm_delay
#define snd_pcm_state psnd_pcm_state
#define snd_pcm_avail_update psnd_pcm_avail_update
#define snd_pcm_areas_silence psnd_pcm_areas_silence
#define snd_pcm_mmap_begin psnd_pcm_mmap_begin
#define snd_pcm_mmap_commit psnd_pcm_mmap_commit
#define snd_pcm_readi psnd_pcm_readi
#define snd_pcm_writei psnd_pcm_writei
#define snd_pcm_drain psnd_pcm_drain
#define snd_pcm_drop psnd_pcm_drop
#define snd_pcm_recover psnd_pcm_recover
#define snd_pcm_info_malloc psnd_pcm_info_malloc
#define snd_pcm_info_free psnd_pcm_info_free
#define snd_pcm_info_set_device psnd_pcm_info_set_device
#define snd_pcm_info_set_subdevice psnd_pcm_info_set_subdevice
#define snd_pcm_info_set_stream psnd_pcm_info_set_stream
#define snd_pcm_info_get_name psnd_pcm_info_get_name
#define snd_ctl_pcm_next_device psnd_ctl_pcm_next_device
#define snd_ctl_pcm_info psnd_ctl_pcm_info
#define snd_ctl_open psnd_ctl_open
#define snd_ctl_close psnd_ctl_close
#define snd_ctl_card_info_malloc psnd_ctl_card_info_malloc
#define snd_ctl_card_info_free psnd_ctl_card_info_free
#define snd_ctl_card_info psnd_ctl_card_info
#define snd_ctl_card_info_get_name psnd_ctl_card_info_get_name
#define snd_ctl_card_info_get_id psnd_ctl_card_info_get_id
#define snd_card_next psnd_card_next
#define snd_config_update_free_global psnd_config_update_free_global
#endif
#endif
bool alsa_load(void)
{
bool error{false};
#ifdef HAVE_DYNLOAD
if(!alsa_handle)
{
std::string missing_funcs;
alsa_handle = LoadLib("libasound.so.2");
if(!alsa_handle)
{
WARN("Failed to load %s\n", "libasound.so.2");
return ALC_FALSE;
}
error = ALC_FALSE;
#define LOAD_FUNC(f) do { \
p##f = reinterpret_cast<decltype(p##f)>(GetSymbol(alsa_handle, #f)); \
if(p##f == nullptr) { \
error = true; \
missing_funcs += "\n" #f; \
} \
} while(0)
ALSA_FUNCS(LOAD_FUNC);
#undef LOAD_FUNC
if(error)
{
WARN("Missing expected functions:%s\n", missing_funcs.c_str());
CloseLib(alsa_handle);
alsa_handle = nullptr;
}
}
#endif
return !error;
}
struct DevMap {
std::string name;
std::string device_name;
template<typename StrT0, typename StrT1>
DevMap(StrT0&& name_, StrT1&& devname_)
: name{std::forward<StrT0>(name_)}, device_name{std::forward<StrT1>(devname_)}
{ }
};
al::vector<DevMap> PlaybackDevices;
al::vector<DevMap> CaptureDevices;
const char *prefix_name(snd_pcm_stream_t stream)
{
assert(stream == SND_PCM_STREAM_PLAYBACK || stream == SND_PCM_STREAM_CAPTURE);
return (stream==SND_PCM_STREAM_PLAYBACK) ? "device-prefix" : "capture-prefix";
}
al::vector<DevMap> probe_devices(snd_pcm_stream_t stream)
{
al::vector<DevMap> devlist;
snd_ctl_card_info_t *info;
snd_ctl_card_info_malloc(&info);
snd_pcm_info_t *pcminfo;
snd_pcm_info_malloc(&pcminfo);
devlist.emplace_back(alsaDevice,
GetConfigValue(nullptr, "alsa", (stream==SND_PCM_STREAM_PLAYBACK) ? "device" : "capture",
"default")
);
if(stream == SND_PCM_STREAM_PLAYBACK)
{
const char *customdevs;
const char *next{GetConfigValue(nullptr, "alsa", "custom-devices", "")};
while((customdevs=next) != nullptr && customdevs[0])
{
next = strchr(customdevs, ';');
const char *sep{strchr(customdevs, '=')};
if(!sep)
{
std::string spec{next ? std::string(customdevs, next++) : std::string(customdevs)};
ERR("Invalid ALSA device specification \"%s\"\n", spec.c_str());
continue;
}
const char *oldsep{sep++};
devlist.emplace_back(std::string(customdevs, oldsep),
next ? std::string(sep, next++) : std::string(sep));
const auto &entry = devlist.back();
TRACE("Got device \"%s\", \"%s\"\n", entry.name.c_str(), entry.device_name.c_str());
}
}
const char *main_prefix{"plughw:"};
ConfigValueStr(nullptr, "alsa", prefix_name(stream), &main_prefix);
int card{-1};
int err{snd_card_next(&card)};
for(;err >= 0 && card >= 0;err = snd_card_next(&card))
{
std::string name{"hw:" + std::to_string(card)};
snd_ctl_t *handle;
if((err=snd_ctl_open(&handle, name.c_str(), 0)) < 0)
{
ERR("control open (hw:%d): %s\n", card, snd_strerror(err));
continue;
}
if((err=snd_ctl_card_info(handle, info)) < 0)
{
ERR("control hardware info (hw:%d): %s\n", card, snd_strerror(err));
snd_ctl_close(handle);
continue;
}
const char *cardname{snd_ctl_card_info_get_name(info)};
const char *cardid{snd_ctl_card_info_get_id(info)};
name = prefix_name(stream);
name += '-';
name += cardid;
const char *card_prefix{main_prefix};
ConfigValueStr(nullptr, "alsa", name.c_str(), &card_prefix);
int dev{-1};
while(1)
{
if(snd_ctl_pcm_next_device(handle, &dev) < 0)
ERR("snd_ctl_pcm_next_device failed\n");
if(dev < 0) break;
snd_pcm_info_set_device(pcminfo, dev);
snd_pcm_info_set_subdevice(pcminfo, 0);
snd_pcm_info_set_stream(pcminfo, stream);
if((err=snd_ctl_pcm_info(handle, pcminfo)) < 0)
{
if(err != -ENOENT)
ERR("control digital audio info (hw:%d): %s\n", card, snd_strerror(err));
continue;
}
/* "prefix-cardid-dev" */
name = prefix_name(stream);
name += '-';
name += cardid;
name += '-';
name += std::to_string(dev);
const char *device_prefix{card_prefix};
ConfigValueStr(nullptr, "alsa", name.c_str(), &device_prefix);
/* "CardName, PcmName (CARD=cardid,DEV=dev)" */
name = cardname;
name += ", ";
name += snd_pcm_info_get_name(pcminfo);
name += " (CARD=";
name += cardid;
name += ",DEV=";
name += std::to_string(dev);
name += ')';
/* "devprefixCARD=cardid,DEV=dev" */
std::string device{device_prefix};
device += "CARD=";
device += cardid;
device += ",DEV=";
device += std::to_string(dev);
devlist.emplace_back(std::move(name), std::move(device));
const auto &entry = devlist.back();
TRACE("Got device \"%s\", \"%s\"\n", entry.name.c_str(), entry.device_name.c_str());
}
snd_ctl_close(handle);
}
if(err < 0)
ERR("snd_card_next failed: %s\n", snd_strerror(err));
snd_pcm_info_free(pcminfo);
snd_ctl_card_info_free(info);
return devlist;
}
int verify_state(snd_pcm_t *handle)
{
snd_pcm_state_t state{snd_pcm_state(handle)};
int err;
switch(state)
{
case SND_PCM_STATE_OPEN:
case SND_PCM_STATE_SETUP:
case SND_PCM_STATE_PREPARED:
case SND_PCM_STATE_RUNNING:
case SND_PCM_STATE_DRAINING:
case SND_PCM_STATE_PAUSED:
/* All Okay */
break;
case SND_PCM_STATE_XRUN:
if((err=snd_pcm_recover(handle, -EPIPE, 1)) < 0)
return err;
break;
case SND_PCM_STATE_SUSPENDED:
if((err=snd_pcm_recover(handle, -ESTRPIPE, 1)) < 0)
return err;
break;
case SND_PCM_STATE_DISCONNECTED:
return -ENODEV;
}
return state;
}
struct ALCplaybackAlsa final : public ALCbackend {
snd_pcm_t *PcmHandle{nullptr};
al::vector<char> Buffer;
std::atomic<ALenum> mKillNow{AL_TRUE};
std::thread mThread;
};
int ALCplaybackAlsa_mixerProc(ALCplaybackAlsa *self);
int ALCplaybackAlsa_mixerNoMMapProc(ALCplaybackAlsa *self);
void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device);
void ALCplaybackAlsa_Destruct(ALCplaybackAlsa *self);
ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name);
ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self);
ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self);
void ALCplaybackAlsa_stop(ALCplaybackAlsa *self);
DECLARE_FORWARD2(ALCplaybackAlsa, ALCbackend, ALCenum, captureSamples, void*, ALCuint)
DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, ALCuint, availableSamples)
ClockLatency ALCplaybackAlsa_getClockLatency(ALCplaybackAlsa *self);
DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, lock)
DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCplaybackAlsa)
DEFINE_ALCBACKEND_VTABLE(ALCplaybackAlsa);
void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device)
{
new (self) ALCplaybackAlsa{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCplaybackAlsa, ALCbackend, self);
}
void ALCplaybackAlsa_Destruct(ALCplaybackAlsa *self)
{
if(self->PcmHandle)
snd_pcm_close(self->PcmHandle);
self->PcmHandle = nullptr;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
self->~ALCplaybackAlsa();
}
int ALCplaybackAlsa_mixerProc(ALCplaybackAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
SetRTPriority();
althrd_setname(MIXER_THREAD_NAME);
snd_pcm_uframes_t update_size{device->UpdateSize};
snd_pcm_uframes_t num_updates{device->NumUpdates};
while(!self->mKillNow.load(std::memory_order_acquire))
{
int state{verify_state(self->PcmHandle)};
if(state < 0)
{
ERR("Invalid state detected: %s\n", snd_strerror(state));
ALCplaybackAlsa_lock(self);
aluHandleDisconnect(device, "Bad state: %s", snd_strerror(state));
ALCplaybackAlsa_unlock(self);
break;
}
snd_pcm_sframes_t avail{snd_pcm_avail_update(self->PcmHandle)};
if(avail < 0)
{
ERR("available update failed: %s\n", snd_strerror(avail));
continue;
}
if((snd_pcm_uframes_t)avail > update_size*(num_updates+1))
{
WARN("available samples exceeds the buffer size\n");
snd_pcm_reset(self->PcmHandle);
continue;
}
// make sure there's frames to process
if((snd_pcm_uframes_t)avail < update_size)
{
if(state != SND_PCM_STATE_RUNNING)
{
int err{snd_pcm_start(self->PcmHandle)};
if(err < 0)
{
ERR("start failed: %s\n", snd_strerror(err));
continue;
}
}
if(snd_pcm_wait(self->PcmHandle, 1000) == 0)
ERR("Wait timeout... buffer size too low?\n");
continue;
}
avail -= avail%update_size;
// it is possible that contiguous areas are smaller, thus we use a loop
ALCplaybackAlsa_lock(self);
while(avail > 0)
{
snd_pcm_uframes_t frames{static_cast<snd_pcm_uframes_t>(avail)};
const snd_pcm_channel_area_t *areas{};
snd_pcm_uframes_t offset{};
int err{snd_pcm_mmap_begin(self->PcmHandle, &areas, &offset, &frames)};
if(err < 0)
{
ERR("mmap begin error: %s\n", snd_strerror(err));
break;
}
char *WritePtr{(char*)areas->addr + (offset * areas->step / 8)};
aluMixData(device, WritePtr, frames);
snd_pcm_sframes_t commitres{snd_pcm_mmap_commit(self->PcmHandle, offset, frames)};
if(commitres < 0 || (commitres-frames) != 0)
{
ERR("mmap commit error: %s\n",
snd_strerror(commitres >= 0 ? -EPIPE : commitres));
break;
}
avail -= frames;
}
ALCplaybackAlsa_unlock(self);
}
return 0;
}
int ALCplaybackAlsa_mixerNoMMapProc(ALCplaybackAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
SetRTPriority();
althrd_setname(MIXER_THREAD_NAME);
snd_pcm_uframes_t update_size{device->UpdateSize};
snd_pcm_uframes_t num_updates{device->NumUpdates};
while(!self->mKillNow.load(std::memory_order_acquire))
{
int state{verify_state(self->PcmHandle)};
if(state < 0)
{
ERR("Invalid state detected: %s\n", snd_strerror(state));
ALCplaybackAlsa_lock(self);
aluHandleDisconnect(device, "Bad state: %s", snd_strerror(state));
ALCplaybackAlsa_unlock(self);
break;
}
snd_pcm_sframes_t avail{snd_pcm_avail_update(self->PcmHandle)};
if(avail < 0)
{
ERR("available update failed: %s\n", snd_strerror(avail));
continue;
}
if((snd_pcm_uframes_t)avail > update_size*num_updates)
{
WARN("available samples exceeds the buffer size\n");
snd_pcm_reset(self->PcmHandle);
continue;
}
if((snd_pcm_uframes_t)avail < update_size)
{
if(state != SND_PCM_STATE_RUNNING)
{
int err{snd_pcm_start(self->PcmHandle)};
if(err < 0)
{
ERR("start failed: %s\n", snd_strerror(err));
continue;
}
}
if(snd_pcm_wait(self->PcmHandle, 1000) == 0)
ERR("Wait timeout... buffer size too low?\n");
continue;
}
ALCplaybackAlsa_lock(self);
char *WritePtr{self->Buffer.data()};
avail = snd_pcm_bytes_to_frames(self->PcmHandle, self->Buffer.size());
aluMixData(device, WritePtr, avail);
while(avail > 0)
{
int ret = snd_pcm_writei(self->PcmHandle, WritePtr, avail);
switch (ret)
{
case -EAGAIN:
continue;
#if ESTRPIPE != EPIPE
case -ESTRPIPE:
#endif
case -EPIPE:
case -EINTR:
ret = snd_pcm_recover(self->PcmHandle, ret, 1);
if(ret < 0)
avail = 0;
break;
default:
if (ret >= 0)
{
WritePtr += snd_pcm_frames_to_bytes(self->PcmHandle, ret);
avail -= ret;
}
break;
}
if (ret < 0)
{
ret = snd_pcm_prepare(self->PcmHandle);
if(ret < 0)
break;
}
}
ALCplaybackAlsa_unlock(self);
}
return 0;
}
ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name)
{
const char *driver{};
if(name)
{
if(PlaybackDevices.empty())
PlaybackDevices = probe_devices(SND_PCM_STREAM_PLAYBACK);
auto iter = std::find_if(PlaybackDevices.cbegin(), PlaybackDevices.cend(),
[name](const DevMap &entry) -> bool
{ return entry.name == name; }
);
if(iter == PlaybackDevices.cend())
return ALC_INVALID_VALUE;
driver = iter->device_name.c_str();
}
else
{
name = alsaDevice;
driver = GetConfigValue(nullptr, "alsa", "device", "default");
}
TRACE("Opening device \"%s\"\n", driver);
int err{snd_pcm_open(&self->PcmHandle, driver, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK)};
if(err < 0)
{
ERR("Could not open playback device '%s': %s\n", driver, snd_strerror(err));
return ALC_OUT_OF_MEMORY;
}
/* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */
snd_config_update_free_global();
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
device->DeviceName = name;
return ALC_NO_ERROR;
}
ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
snd_pcm_format_t format{SND_PCM_FORMAT_UNKNOWN};
switch(device->FmtType)
{
case DevFmtByte:
format = SND_PCM_FORMAT_S8;
break;
case DevFmtUByte:
format = SND_PCM_FORMAT_U8;
break;
case DevFmtShort:
format = SND_PCM_FORMAT_S16;
break;
case DevFmtUShort:
format = SND_PCM_FORMAT_U16;
break;
case DevFmtInt:
format = SND_PCM_FORMAT_S32;
break;
case DevFmtUInt:
format = SND_PCM_FORMAT_U32;
break;
case DevFmtFloat:
format = SND_PCM_FORMAT_FLOAT;
break;
}
bool allowmmap{!!GetConfigValueBool(device->DeviceName.c_str(), "alsa", "mmap", 1)};
ALuint periods{device->NumUpdates};
ALuint periodLen{static_cast<ALuint>(device->UpdateSize * U64(1000000) / device->Frequency)};
ALuint bufferLen{periodLen * periods};
ALuint rate{device->Frequency};
snd_pcm_uframes_t periodSizeInFrames;
snd_pcm_sw_params_t *sp{};
snd_pcm_hw_params_t *hp{};
snd_pcm_access_t access;
const char *funcerr;
int dir, err;
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_any(self->PcmHandle, hp));
/* set interleaved access */
if(!allowmmap || snd_pcm_hw_params_set_access(self->PcmHandle, hp, SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0)
{
/* No mmap */
CHECK(snd_pcm_hw_params_set_access(self->PcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED));
}
/* test and set format (implicitly sets sample bits) */
if(snd_pcm_hw_params_test_format(self->PcmHandle, hp, format) < 0)
{
static const struct {
snd_pcm_format_t format;
DevFmtType fmttype;
} formatlist[] = {
{ SND_PCM_FORMAT_FLOAT, DevFmtFloat },
{ SND_PCM_FORMAT_S32, DevFmtInt },
{ SND_PCM_FORMAT_U32, DevFmtUInt },
{ SND_PCM_FORMAT_S16, DevFmtShort },
{ SND_PCM_FORMAT_U16, DevFmtUShort },
{ SND_PCM_FORMAT_S8, DevFmtByte },
{ SND_PCM_FORMAT_U8, DevFmtUByte },
};
for(const auto &fmt : formatlist)
{
format = fmt.format;
if(snd_pcm_hw_params_test_format(self->PcmHandle, hp, format) >= 0)
{
device->FmtType = fmt.fmttype;
break;
}
}
}
CHECK(snd_pcm_hw_params_set_format(self->PcmHandle, hp, format));
/* test and set channels (implicitly sets frame bits) */
if(snd_pcm_hw_params_test_channels(self->PcmHandle, hp, device->channelsFromFmt()) < 0)
{
static const DevFmtChannels channellist[] = {
DevFmtStereo,
DevFmtQuad,
DevFmtX51,
DevFmtX71,
DevFmtMono,
};
for(const auto &chan : channellist)
{
if(snd_pcm_hw_params_test_channels(self->PcmHandle, hp, ChannelsFromDevFmt(chan, 0)) >= 0)
{
device->FmtChans = chan;
device->mAmbiOrder = 0;
break;
}
}
}
CHECK(snd_pcm_hw_params_set_channels(self->PcmHandle, hp, device->channelsFromFmt()));
/* set rate (implicitly constrains period/buffer parameters) */
if(!GetConfigValueBool(device->DeviceName.c_str(), "alsa", "allow-resampler", 0) ||
!(device->Flags&DEVICE_FREQUENCY_REQUEST))
{
if(snd_pcm_hw_params_set_rate_resample(self->PcmHandle, hp, 0) < 0)
ERR("Failed to disable ALSA resampler\n");
}
else if(snd_pcm_hw_params_set_rate_resample(self->PcmHandle, hp, 1) < 0)
ERR("Failed to enable ALSA resampler\n");
CHECK(snd_pcm_hw_params_set_rate_near(self->PcmHandle, hp, &rate, nullptr));
/* set buffer time (implicitly constrains period/buffer parameters) */
if((err=snd_pcm_hw_params_set_buffer_time_near(self->PcmHandle, hp, &bufferLen, nullptr)) < 0)
ERR("snd_pcm_hw_params_set_buffer_time_near failed: %s\n", snd_strerror(err));
/* set period time (implicitly sets buffer size/bytes/time and period size/bytes) */
if((err=snd_pcm_hw_params_set_period_time_near(self->PcmHandle, hp, &periodLen, nullptr)) < 0)
ERR("snd_pcm_hw_params_set_period_time_near failed: %s\n", snd_strerror(err));
/* install and prepare hardware configuration */
CHECK(snd_pcm_hw_params(self->PcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_access(hp, &access));
CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, nullptr));
CHECK(snd_pcm_hw_params_get_periods(hp, &periods, &dir));
if(dir != 0)
WARN("Inexact period count: %u (%d)\n", periods, dir);
snd_pcm_hw_params_free(hp);
hp = nullptr;
snd_pcm_sw_params_malloc(&sp);
CHECK(snd_pcm_sw_params_current(self->PcmHandle, sp));
CHECK(snd_pcm_sw_params_set_avail_min(self->PcmHandle, sp, periodSizeInFrames));
CHECK(snd_pcm_sw_params_set_stop_threshold(self->PcmHandle, sp, periodSizeInFrames*periods));
CHECK(snd_pcm_sw_params(self->PcmHandle, sp));
#undef CHECK
snd_pcm_sw_params_free(sp);
sp = nullptr;
device->NumUpdates = periods;
device->UpdateSize = periodSizeInFrames;
device->Frequency = rate;
SetDefaultChannelOrder(device);
return ALC_TRUE;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
if(sp) snd_pcm_sw_params_free(sp);
return ALC_FALSE;
}
ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
int (*thread_func)(ALCplaybackAlsa*){};
snd_pcm_hw_params_t *hp{};
snd_pcm_access_t access;
const char *funcerr;
int err;
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_current(self->PcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_access(hp, &access));
#undef CHECK
snd_pcm_hw_params_free(hp);
hp = nullptr;
if(access == SND_PCM_ACCESS_RW_INTERLEAVED)
{
self->Buffer.resize(snd_pcm_frames_to_bytes(self->PcmHandle, device->UpdateSize));
thread_func = ALCplaybackAlsa_mixerNoMMapProc;
}
else
{
err = snd_pcm_prepare(self->PcmHandle);
if(err < 0)
{
ERR("snd_pcm_prepare(data->PcmHandle) failed: %s\n", snd_strerror(err));
return ALC_FALSE;
}
thread_func = ALCplaybackAlsa_mixerProc;
}
try {
self->mKillNow.store(AL_FALSE, std::memory_order_release);
self->mThread = std::thread(thread_func, self);
return ALC_TRUE;
}
catch(std::exception& e) {
ERR("Could not create playback thread: %s\n", e.what());
}
catch(...) {
}
self->Buffer.clear();
return ALC_FALSE;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
return ALC_FALSE;
}
void ALCplaybackAlsa_stop(ALCplaybackAlsa *self)
{
if(self->mKillNow.exchange(AL_TRUE, std::memory_order_acq_rel) || !self->mThread.joinable())
return;
self->mThread.join();
self->Buffer.clear();
}
ClockLatency ALCplaybackAlsa_getClockLatency(ALCplaybackAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
ClockLatency ret;
ALCplaybackAlsa_lock(self);
ret.ClockTime = GetDeviceClockTime(device);
snd_pcm_sframes_t delay{};
int err{snd_pcm_delay(self->PcmHandle, &delay)};
if(err < 0)
{
ERR("Failed to get pcm delay: %s\n", snd_strerror(err));
delay = 0;
}
ret.Latency = std::chrono::seconds{std::max<snd_pcm_sframes_t>(0, delay)};
ret.Latency /= device->Frequency;
ALCplaybackAlsa_unlock(self);
return ret;
}
struct ALCcaptureAlsa final : public ALCbackend {
snd_pcm_t *PcmHandle{nullptr};
al::vector<char> Buffer;
bool DoCapture{false};
RingBufferPtr Ring{nullptr};
snd_pcm_sframes_t mLastAvail{0};
};
void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device);
void ALCcaptureAlsa_Destruct(ALCcaptureAlsa *self);
ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name);
DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, ALCboolean, reset)
ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self);
void ALCcaptureAlsa_stop(ALCcaptureAlsa *self);
ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples);
ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self);
ClockLatency ALCcaptureAlsa_getClockLatency(ALCcaptureAlsa *self);
DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, lock)
DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCcaptureAlsa)
DEFINE_ALCBACKEND_VTABLE(ALCcaptureAlsa);
void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device)
{
new (self) ALCcaptureAlsa{};
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCcaptureAlsa, ALCbackend, self);
}
void ALCcaptureAlsa_Destruct(ALCcaptureAlsa *self)
{
if(self->PcmHandle)
snd_pcm_close(self->PcmHandle);
self->PcmHandle = nullptr;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
self->~ALCcaptureAlsa();
}
ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
const char *driver{};
if(name)
{
if(CaptureDevices.empty())
CaptureDevices = probe_devices(SND_PCM_STREAM_CAPTURE);
auto iter = std::find_if(CaptureDevices.cbegin(), CaptureDevices.cend(),
[name](const DevMap &entry) -> bool
{ return entry.name == name; }
);
if(iter == CaptureDevices.cend())
return ALC_INVALID_VALUE;
driver = iter->device_name.c_str();
}
else
{
name = alsaDevice;
driver = GetConfigValue(nullptr, "alsa", "capture", "default");
}
TRACE("Opening device \"%s\"\n", driver);
int err{snd_pcm_open(&self->PcmHandle, driver, SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK)};
if(err < 0)
{
ERR("Could not open capture device '%s': %s\n", driver, snd_strerror(err));
return ALC_INVALID_VALUE;
}
/* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */
snd_config_update_free_global();
snd_pcm_format_t format{SND_PCM_FORMAT_UNKNOWN};
switch(device->FmtType)
{
case DevFmtByte:
format = SND_PCM_FORMAT_S8;
break;
case DevFmtUByte:
format = SND_PCM_FORMAT_U8;
break;
case DevFmtShort:
format = SND_PCM_FORMAT_S16;
break;
case DevFmtUShort:
format = SND_PCM_FORMAT_U16;
break;
case DevFmtInt:
format = SND_PCM_FORMAT_S32;
break;
case DevFmtUInt:
format = SND_PCM_FORMAT_U32;
break;
case DevFmtFloat:
format = SND_PCM_FORMAT_FLOAT;
break;
}
snd_pcm_uframes_t bufferSizeInFrames{maxu(device->UpdateSize*device->NumUpdates,
100*device->Frequency/1000)};
snd_pcm_uframes_t periodSizeInFrames{minu(bufferSizeInFrames, 25*device->Frequency/1000)};
bool needring{false};
const char *funcerr{};
snd_pcm_hw_params_t *hp{};
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_any(self->PcmHandle, hp));
/* set interleaved access */
CHECK(snd_pcm_hw_params_set_access(self->PcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED));
/* set format (implicitly sets sample bits) */
CHECK(snd_pcm_hw_params_set_format(self->PcmHandle, hp, format));
/* set channels (implicitly sets frame bits) */
CHECK(snd_pcm_hw_params_set_channels(self->PcmHandle, hp, device->channelsFromFmt()));
/* set rate (implicitly constrains period/buffer parameters) */
CHECK(snd_pcm_hw_params_set_rate(self->PcmHandle, hp, device->Frequency, 0));
/* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */
if(snd_pcm_hw_params_set_buffer_size_min(self->PcmHandle, hp, &bufferSizeInFrames) < 0)
{
TRACE("Buffer too large, using intermediate ring buffer\n");
needring = true;
CHECK(snd_pcm_hw_params_set_buffer_size_near(self->PcmHandle, hp, &bufferSizeInFrames));
}
/* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */
CHECK(snd_pcm_hw_params_set_period_size_near(self->PcmHandle, hp, &periodSizeInFrames, nullptr));
/* install and prepare hardware configuration */
CHECK(snd_pcm_hw_params(self->PcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, nullptr));
#undef CHECK
snd_pcm_hw_params_free(hp);
hp = nullptr;
if(needring)
{
self->Ring.reset(ll_ringbuffer_create(device->UpdateSize*device->NumUpdates,
device->frameSizeFromFmt(), false));
if(!self->Ring)
{
ERR("ring buffer create failed\n");
goto error2;
}
}
device->DeviceName = name;
return ALC_NO_ERROR;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
error2:
self->Ring = nullptr;
snd_pcm_close(self->PcmHandle);
self->PcmHandle = nullptr;
return ALC_INVALID_VALUE;
}
ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self)
{
int err{snd_pcm_prepare(self->PcmHandle)};
if(err < 0)
ERR("prepare failed: %s\n", snd_strerror(err));
else
{
err = snd_pcm_start(self->PcmHandle);
if(err < 0)
ERR("start failed: %s\n", snd_strerror(err));
}
if(err < 0)
{
aluHandleDisconnect(STATIC_CAST(ALCbackend, self)->mDevice, "Capture state failure: %s",
snd_strerror(err));
return ALC_FALSE;
}
self->DoCapture = true;
return ALC_TRUE;
}
void ALCcaptureAlsa_stop(ALCcaptureAlsa *self)
{
/* OpenAL requires access to unread audio after stopping, but ALSA's
* snd_pcm_drain is unreliable and snd_pcm_drop drops it. Capture what's
* available now so it'll be available later after the drop. */
ALCuint avail{ALCcaptureAlsa_availableSamples(self)};
if(!self->Ring && avail > 0)
{
/* The ring buffer implicitly captures when checking availability.
* Direct access needs to explicitly capture it into temp storage. */
al::vector<char> temp(snd_pcm_frames_to_bytes(self->PcmHandle, avail));
ALCcaptureAlsa_captureSamples(self, temp.data(), avail);
self->Buffer = std::move(temp);
}
int err{snd_pcm_drop(self->PcmHandle)};
if(err < 0)
ERR("drop failed: %s\n", snd_strerror(err));
self->DoCapture = false;
}
ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
if(RingBuffer *ring{self->Ring.get()})
{
ring->read(static_cast<char*>(buffer), samples);
return ALC_NO_ERROR;
}
self->mLastAvail -= samples;
while(device->Connected.load(std::memory_order_acquire) && samples > 0)
{
snd_pcm_sframes_t amt{0};
if(!self->Buffer.empty())
{
/* First get any data stored from the last stop */
amt = snd_pcm_bytes_to_frames(self->PcmHandle, self->Buffer.size());
if((snd_pcm_uframes_t)amt > samples) amt = samples;
amt = snd_pcm_frames_to_bytes(self->PcmHandle, amt);
memcpy(buffer, self->Buffer.data(), amt);
self->Buffer.erase(self->Buffer.begin(), self->Buffer.begin()+amt);
amt = snd_pcm_bytes_to_frames(self->PcmHandle, amt);
}
else if(self->DoCapture)
amt = snd_pcm_readi(self->PcmHandle, buffer, samples);
if(amt < 0)
{
ERR("read error: %s\n", snd_strerror(amt));
if(amt == -EAGAIN)
continue;
if((amt=snd_pcm_recover(self->PcmHandle, amt, 1)) >= 0)
{
amt = snd_pcm_start(self->PcmHandle);
if(amt >= 0)
amt = snd_pcm_avail_update(self->PcmHandle);
}
if(amt < 0)
{
ERR("restore error: %s\n", snd_strerror(amt));
aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(amt));
break;
}
/* If the amount available is less than what's asked, we lost it
* during recovery. So just give silence instead. */
if((snd_pcm_uframes_t)amt < samples)
break;
continue;
}
buffer = (ALbyte*)buffer + amt;
samples -= amt;
}
if(samples > 0)
memset(buffer, ((device->FmtType == DevFmtUByte) ? 0x80 : 0),
snd_pcm_frames_to_bytes(self->PcmHandle, samples));
return ALC_NO_ERROR;
}
ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_sframes_t avail{0};
if(device->Connected.load(std::memory_order_acquire) && self->DoCapture)
avail = snd_pcm_avail_update(self->PcmHandle);
if(avail < 0)
{
ERR("avail update failed: %s\n", snd_strerror(avail));
if((avail=snd_pcm_recover(self->PcmHandle, avail, 1)) >= 0)
{
if(self->DoCapture)
avail = snd_pcm_start(self->PcmHandle);
if(avail >= 0)
avail = snd_pcm_avail_update(self->PcmHandle);
}
if(avail < 0)
{
ERR("restore error: %s\n", snd_strerror(avail));
aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(avail));
}
}
RingBuffer *ring{self->Ring.get()};
if(!ring)
{
if(avail < 0) avail = 0;
avail += snd_pcm_bytes_to_frames(self->PcmHandle, self->Buffer.size());
if(avail > self->mLastAvail) self->mLastAvail = avail;
return self->mLastAvail;
}
while(avail > 0)
{
auto vec = ring->getWriteVector();
if(vec.first.len == 0) break;
snd_pcm_sframes_t amt{std::min<snd_pcm_sframes_t>(vec.first.len, avail)};
amt = snd_pcm_readi(self->PcmHandle, vec.first.buf, amt);
if(amt < 0)
{
ERR("read error: %s\n", snd_strerror(amt));
if(amt == -EAGAIN)
continue;
if((amt=snd_pcm_recover(self->PcmHandle, amt, 1)) >= 0)
{
if(self->DoCapture)
amt = snd_pcm_start(self->PcmHandle);
if(amt >= 0)
amt = snd_pcm_avail_update(self->PcmHandle);
}
if(amt < 0)
{
ERR("restore error: %s\n", snd_strerror(amt));
aluHandleDisconnect(device, "Capture recovery failure: %s", snd_strerror(amt));
break;
}
avail = amt;
continue;
}
ring->writeAdvance(amt);
avail -= amt;
}
return ring->readSpace();
}
ClockLatency ALCcaptureAlsa_getClockLatency(ALCcaptureAlsa *self)
{
ALCdevice *device{STATIC_CAST(ALCbackend, self)->mDevice};
ClockLatency ret;
ALCcaptureAlsa_lock(self);
ret.ClockTime = GetDeviceClockTime(device);
snd_pcm_sframes_t delay{};
int err{snd_pcm_delay(self->PcmHandle, &delay)};
if(err < 0)
{
ERR("Failed to get pcm delay: %s\n", snd_strerror(err));
delay = 0;
}
ret.Latency = std::chrono::seconds{std::max<snd_pcm_sframes_t>(0, delay)};
ret.Latency /= device->Frequency;
ALCcaptureAlsa_unlock(self);
return ret;
}
} // namespace
bool AlsaBackendFactory::init()
{ return !!alsa_load(); }
void AlsaBackendFactory::deinit()
{
PlaybackDevices.clear();
CaptureDevices.clear();
#ifdef HAVE_DYNLOAD
if(alsa_handle)
CloseLib(alsa_handle);
alsa_handle = nullptr;
#endif
}
bool AlsaBackendFactory::querySupport(ALCbackend_Type type)
{ return (type == ALCbackend_Playback || type == ALCbackend_Capture); }
void AlsaBackendFactory::probe(DevProbe type, std::string *outnames)
{
auto add_device = [outnames](const DevMap &entry) -> void
{
/* +1 to also append the null char (to ensure a null-separated list and
* double-null terminated list).
*/
outnames->append(entry.name.c_str(), entry.name.length()+1);
};
switch(type)
{
case ALL_DEVICE_PROBE:
PlaybackDevices = probe_devices(SND_PCM_STREAM_PLAYBACK);
std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device);
break;
case CAPTURE_DEVICE_PROBE:
CaptureDevices = probe_devices(SND_PCM_STREAM_CAPTURE);
std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device);
break;
}
}
ALCbackend *AlsaBackendFactory::createBackend(ALCdevice *device, ALCbackend_Type type)
{
if(type == ALCbackend_Playback)
{
ALCplaybackAlsa *backend;
NEW_OBJ(backend, ALCplaybackAlsa)(device);
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
if(type == ALCbackend_Capture)
{
ALCcaptureAlsa *backend;
NEW_OBJ(backend, ALCcaptureAlsa)(device);
if(!backend) return nullptr;
return STATIC_CAST(ALCbackend, backend);
}
return nullptr;
}
BackendFactory &AlsaBackendFactory::getFactory()
{
static AlsaBackendFactory factory{};
return factory;
}