168 lines
5.9 KiB
C++
168 lines
5.9 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2013 by Mike Gorchak
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#include "alcmain.h"
|
|
#include "alcontext.h"
|
|
#include "core/filters/biquad.h"
|
|
#include "effectslot.h"
|
|
|
|
|
|
namespace {
|
|
|
|
struct DistortionState final : public EffectState {
|
|
/* Effect gains for each channel */
|
|
float mGain[MAX_OUTPUT_CHANNELS]{};
|
|
|
|
/* Effect parameters */
|
|
BiquadFilter mLowpass;
|
|
BiquadFilter mBandpass;
|
|
float mAttenuation{};
|
|
float mEdgeCoeff{};
|
|
|
|
float mBuffer[2][BufferLineSize]{};
|
|
|
|
|
|
void deviceUpdate(const ALCdevice *device, const Buffer &buffer) override;
|
|
void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props,
|
|
const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
|
|
const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
DEF_NEWDEL(DistortionState)
|
|
};
|
|
|
|
void DistortionState::deviceUpdate(const ALCdevice*, const Buffer&)
|
|
{
|
|
mLowpass.clear();
|
|
mBandpass.clear();
|
|
}
|
|
|
|
void DistortionState::update(const ALCcontext *context, const EffectSlot *slot,
|
|
const EffectProps *props, const EffectTarget target)
|
|
{
|
|
const ALCdevice *device{context->mDevice.get()};
|
|
|
|
/* Store waveshaper edge settings. */
|
|
const float edge{minf(std::sin(al::MathDefs<float>::Pi()*0.5f * props->Distortion.Edge),
|
|
0.99f)};
|
|
mEdgeCoeff = 2.0f * edge / (1.0f-edge);
|
|
|
|
float cutoff{props->Distortion.LowpassCutoff};
|
|
/* Bandwidth value is constant in octaves. */
|
|
float bandwidth{(cutoff / 2.0f) / (cutoff * 0.67f)};
|
|
/* Divide normalized frequency by the amount of oversampling done during
|
|
* processing.
|
|
*/
|
|
auto frequency = static_cast<float>(device->Frequency);
|
|
mLowpass.setParamsFromBandwidth(BiquadType::LowPass, cutoff/frequency/4.0f, 1.0f, bandwidth);
|
|
|
|
cutoff = props->Distortion.EQCenter;
|
|
/* Convert bandwidth in Hz to octaves. */
|
|
bandwidth = props->Distortion.EQBandwidth / (cutoff * 0.67f);
|
|
mBandpass.setParamsFromBandwidth(BiquadType::BandPass, cutoff/frequency/4.0f, 1.0f, bandwidth);
|
|
|
|
const auto coeffs = CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f);
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
ComputePanGains(target.Main, coeffs.data(), slot->Gain*props->Distortion.Gain, mGain);
|
|
}
|
|
|
|
void DistortionState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
const float fc{mEdgeCoeff};
|
|
for(size_t base{0u};base < samplesToDo;)
|
|
{
|
|
/* Perform 4x oversampling to avoid aliasing. Oversampling greatly
|
|
* improves distortion quality and allows to implement lowpass and
|
|
* bandpass filters using high frequencies, at which classic IIR
|
|
* filters became unstable.
|
|
*/
|
|
size_t todo{minz(BufferLineSize, (samplesToDo-base) * 4)};
|
|
|
|
/* Fill oversample buffer using zero stuffing. Multiply the sample by
|
|
* the amount of oversampling to maintain the signal's power.
|
|
*/
|
|
for(size_t i{0u};i < todo;i++)
|
|
mBuffer[0][i] = !(i&3) ? samplesIn[0][(i>>2)+base] * 4.0f : 0.0f;
|
|
|
|
/* First step, do lowpass filtering of original signal. Additionally
|
|
* perform buffer interpolation and lowpass cutoff for oversampling
|
|
* (which is fortunately first step of distortion). So combine three
|
|
* operations into the one.
|
|
*/
|
|
mLowpass.process({mBuffer[0], todo}, mBuffer[1]);
|
|
|
|
/* Second step, do distortion using waveshaper function to emulate
|
|
* signal processing during tube overdriving. Three steps of
|
|
* waveshaping are intended to modify waveform without boost/clipping/
|
|
* attenuation process.
|
|
*/
|
|
auto proc_sample = [fc](float smp) -> float
|
|
{
|
|
smp = (1.0f + fc) * smp/(1.0f + fc*std::abs(smp));
|
|
smp = (1.0f + fc) * smp/(1.0f + fc*std::abs(smp)) * -1.0f;
|
|
smp = (1.0f + fc) * smp/(1.0f + fc*std::abs(smp));
|
|
return smp;
|
|
};
|
|
std::transform(std::begin(mBuffer[1]), std::begin(mBuffer[1])+todo, std::begin(mBuffer[0]),
|
|
proc_sample);
|
|
|
|
/* Third step, do bandpass filtering of distorted signal. */
|
|
mBandpass.process({mBuffer[0], todo}, mBuffer[1]);
|
|
|
|
todo >>= 2;
|
|
const float *outgains{mGain};
|
|
for(FloatBufferLine &output : samplesOut)
|
|
{
|
|
/* Fourth step, final, do attenuation and perform decimation,
|
|
* storing only one sample out of four.
|
|
*/
|
|
const float gain{*(outgains++)};
|
|
if(!(std::fabs(gain) > GainSilenceThreshold))
|
|
continue;
|
|
|
|
for(size_t i{0u};i < todo;i++)
|
|
output[base+i] += gain * mBuffer[1][i*4];
|
|
}
|
|
|
|
base += todo;
|
|
}
|
|
}
|
|
|
|
|
|
struct DistortionStateFactory final : public EffectStateFactory {
|
|
al::intrusive_ptr<EffectState> create() override
|
|
{ return al::intrusive_ptr<EffectState>{new DistortionState{}}; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *DistortionStateFactory_getFactory()
|
|
{
|
|
static DistortionStateFactory DistortionFactory{};
|
|
return &DistortionFactory;
|
|
}
|