212 lines
6.8 KiB
C++
212 lines
6.8 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2018 by Raul Herraiz.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "al/auxeffectslot.h"
|
|
#include "alcmain.h"
|
|
#include "alcontext.h"
|
|
#include "alu.h"
|
|
#include "filters/biquad.h"
|
|
#include "vecmat.h"
|
|
|
|
namespace {
|
|
|
|
#define MIN_FREQ 20.0f
|
|
#define MAX_FREQ 2500.0f
|
|
#define Q_FACTOR 5.0f
|
|
|
|
struct AutowahState final : public EffectState {
|
|
/* Effect parameters */
|
|
float mAttackRate;
|
|
float mReleaseRate;
|
|
float mResonanceGain;
|
|
float mPeakGain;
|
|
float mFreqMinNorm;
|
|
float mBandwidthNorm;
|
|
float mEnvDelay;
|
|
|
|
/* Filter components derived from the envelope. */
|
|
struct {
|
|
float cos_w0;
|
|
float alpha;
|
|
} mEnv[BufferLineSize];
|
|
|
|
struct {
|
|
/* Effect filters' history. */
|
|
struct {
|
|
float z1, z2;
|
|
} Filter;
|
|
|
|
/* Effect gains for each output channel */
|
|
float CurrentGains[MAX_OUTPUT_CHANNELS];
|
|
float TargetGains[MAX_OUTPUT_CHANNELS];
|
|
} mChans[MAX_AMBI_CHANNELS];
|
|
|
|
/* Effects buffers */
|
|
alignas(16) float mBufferOut[BufferLineSize];
|
|
|
|
|
|
void deviceUpdate(const ALCdevice *device) override;
|
|
void update(const ALCcontext *context, const EffectSlot *slot, const EffectProps *props,
|
|
const EffectTarget target) override;
|
|
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
|
|
const al::span<FloatBufferLine> samplesOut) override;
|
|
|
|
DEF_NEWDEL(AutowahState)
|
|
};
|
|
|
|
void AutowahState::deviceUpdate(const ALCdevice*)
|
|
{
|
|
/* (Re-)initializing parameters and clear the buffers. */
|
|
|
|
mAttackRate = 1.0f;
|
|
mReleaseRate = 1.0f;
|
|
mResonanceGain = 10.0f;
|
|
mPeakGain = 4.5f;
|
|
mFreqMinNorm = 4.5e-4f;
|
|
mBandwidthNorm = 0.05f;
|
|
mEnvDelay = 0.0f;
|
|
|
|
for(auto &e : mEnv)
|
|
{
|
|
e.cos_w0 = 0.0f;
|
|
e.alpha = 0.0f;
|
|
}
|
|
|
|
for(auto &chan : mChans)
|
|
{
|
|
std::fill(std::begin(chan.CurrentGains), std::end(chan.CurrentGains), 0.0f);
|
|
chan.Filter.z1 = 0.0f;
|
|
chan.Filter.z2 = 0.0f;
|
|
}
|
|
}
|
|
|
|
void AutowahState::update(const ALCcontext *context, const EffectSlot *slot,
|
|
const EffectProps *props, const EffectTarget target)
|
|
{
|
|
const ALCdevice *device{context->mDevice.get()};
|
|
const auto frequency = static_cast<float>(device->Frequency);
|
|
|
|
const float ReleaseTime{clampf(props->Autowah.ReleaseTime, 0.001f, 1.0f)};
|
|
|
|
mAttackRate = std::exp(-1.0f / (props->Autowah.AttackTime*frequency));
|
|
mReleaseRate = std::exp(-1.0f / (ReleaseTime*frequency));
|
|
/* 0-20dB Resonance Peak gain */
|
|
mResonanceGain = std::sqrt(std::log10(props->Autowah.Resonance)*10.0f / 3.0f);
|
|
mPeakGain = 1.0f - std::log10(props->Autowah.PeakGain/AL_AUTOWAH_MAX_PEAK_GAIN);
|
|
mFreqMinNorm = MIN_FREQ / frequency;
|
|
mBandwidthNorm = (MAX_FREQ-MIN_FREQ) / frequency;
|
|
|
|
mOutTarget = target.Main->Buffer;
|
|
auto set_gains = [slot,target](auto &chan, al::span<const float,MAX_AMBI_CHANNELS> coeffs)
|
|
{ ComputePanGains(target.Main, coeffs.data(), slot->Gain, chan.TargetGains); };
|
|
SetAmbiPanIdentity(std::begin(mChans), slot->Wet.Buffer.size(), set_gains);
|
|
}
|
|
|
|
void AutowahState::process(const size_t samplesToDo,
|
|
const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
|
|
{
|
|
const float attack_rate{mAttackRate};
|
|
const float release_rate{mReleaseRate};
|
|
const float res_gain{mResonanceGain};
|
|
const float peak_gain{mPeakGain};
|
|
const float freq_min{mFreqMinNorm};
|
|
const float bandwidth{mBandwidthNorm};
|
|
|
|
float env_delay{mEnvDelay};
|
|
for(size_t i{0u};i < samplesToDo;i++)
|
|
{
|
|
float w0, sample, a;
|
|
|
|
/* Envelope follower described on the book: Audio Effects, Theory,
|
|
* Implementation and Application.
|
|
*/
|
|
sample = peak_gain * std::fabs(samplesIn[0][i]);
|
|
a = (sample > env_delay) ? attack_rate : release_rate;
|
|
env_delay = lerp(sample, env_delay, a);
|
|
|
|
/* Calculate the cos and alpha components for this sample's filter. */
|
|
w0 = minf((bandwidth*env_delay + freq_min), 0.46f) * al::MathDefs<float>::Tau();
|
|
mEnv[i].cos_w0 = std::cos(w0);
|
|
mEnv[i].alpha = std::sin(w0)/(2.0f * Q_FACTOR);
|
|
}
|
|
mEnvDelay = env_delay;
|
|
|
|
auto chandata = std::addressof(mChans[0]);
|
|
for(const auto &insamples : samplesIn)
|
|
{
|
|
/* This effectively inlines BiquadFilter_setParams for a peaking
|
|
* filter and BiquadFilter_processC. The alpha and cosine components
|
|
* for the filter coefficients were previously calculated with the
|
|
* envelope. Because the filter changes for each sample, the
|
|
* coefficients are transient and don't need to be held.
|
|
*/
|
|
float z1{chandata->Filter.z1};
|
|
float z2{chandata->Filter.z2};
|
|
|
|
for(size_t i{0u};i < samplesToDo;i++)
|
|
{
|
|
const float alpha{mEnv[i].alpha};
|
|
const float cos_w0{mEnv[i].cos_w0};
|
|
float input, output;
|
|
float a[3], b[3];
|
|
|
|
b[0] = 1.0f + alpha*res_gain;
|
|
b[1] = -2.0f * cos_w0;
|
|
b[2] = 1.0f - alpha*res_gain;
|
|
a[0] = 1.0f + alpha/res_gain;
|
|
a[1] = -2.0f * cos_w0;
|
|
a[2] = 1.0f - alpha/res_gain;
|
|
|
|
input = insamples[i];
|
|
output = input*(b[0]/a[0]) + z1;
|
|
z1 = input*(b[1]/a[0]) - output*(a[1]/a[0]) + z2;
|
|
z2 = input*(b[2]/a[0]) - output*(a[2]/a[0]);
|
|
mBufferOut[i] = output;
|
|
}
|
|
chandata->Filter.z1 = z1;
|
|
chandata->Filter.z2 = z2;
|
|
|
|
/* Now, mix the processed sound data to the output. */
|
|
MixSamples({mBufferOut, samplesToDo}, samplesOut, chandata->CurrentGains,
|
|
chandata->TargetGains, samplesToDo, 0);
|
|
++chandata;
|
|
}
|
|
}
|
|
|
|
|
|
struct AutowahStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override { return new AutowahState{}; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *AutowahStateFactory_getFactory()
|
|
{
|
|
static AutowahStateFactory AutowahFactory{};
|
|
return &AutowahFactory;
|
|
}
|