499 lines
14 KiB
C++
499 lines
14 KiB
C++
#ifndef _ALU_H_
|
|
#define _ALU_H_
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#ifdef HAVE_FLOAT_H
|
|
#include <float.h>
|
|
#endif
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#include <cmath>
|
|
#include <array>
|
|
|
|
#include "alMain.h"
|
|
#include "alBuffer.h"
|
|
|
|
#include "hrtf.h"
|
|
#include "logging.h"
|
|
#include "math_defs.h"
|
|
#include "filters/biquad.h"
|
|
#include "filters/nfc.h"
|
|
#include "almalloc.h"
|
|
|
|
|
|
constexpr inline ALfloat minf(ALfloat a, ALfloat b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALfloat maxf(ALfloat a, ALfloat b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max) noexcept
|
|
{ return minf(max, maxf(min, val)); }
|
|
|
|
constexpr inline ALdouble mind(ALdouble a, ALdouble b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALdouble maxd(ALdouble a, ALdouble b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max) noexcept
|
|
{ return mind(max, maxd(min, val)); }
|
|
|
|
constexpr inline ALuint minu(ALuint a, ALuint b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALuint maxu(ALuint a, ALuint b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALuint clampu(ALuint val, ALuint min, ALuint max) noexcept
|
|
{ return minu(max, maxu(min, val)); }
|
|
|
|
constexpr inline ALint mini(ALint a, ALint b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALint maxi(ALint a, ALint b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALint clampi(ALint val, ALint min, ALint max) noexcept
|
|
{ return mini(max, maxi(min, val)); }
|
|
|
|
constexpr inline ALint64 mini64(ALint64 a, ALint64 b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALint64 maxi64(ALint64 a, ALint64 b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max) noexcept
|
|
{ return mini64(max, maxi64(min, val)); }
|
|
|
|
constexpr inline ALuint64 minu64(ALuint64 a, ALuint64 b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline ALuint64 maxu64(ALuint64 a, ALuint64 b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max) noexcept
|
|
{ return minu64(max, maxu64(min, val)); }
|
|
|
|
constexpr inline size_t minz(size_t a, size_t b) noexcept
|
|
{ return ((a > b) ? b : a); }
|
|
constexpr inline size_t maxz(size_t a, size_t b) noexcept
|
|
{ return ((a > b) ? a : b); }
|
|
constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
|
|
{ return minz(max, maxz(min, val)); }
|
|
|
|
|
|
enum class DistanceModel;
|
|
|
|
#define MAX_PITCH 255
|
|
#define MAX_SENDS 16
|
|
|
|
/* Maximum number of samples to pad on either end of a buffer for resampling.
|
|
* Note that both the beginning and end need padding!
|
|
*/
|
|
#define MAX_RESAMPLE_PADDING 24
|
|
|
|
|
|
struct BSincTable;
|
|
struct ALsource;
|
|
struct ALbufferlistitem;
|
|
struct ALvoice;
|
|
struct ALeffectslot;
|
|
|
|
|
|
#define DITHER_RNG_SEED 22222
|
|
|
|
|
|
enum SpatializeMode {
|
|
SpatializeOff = AL_FALSE,
|
|
SpatializeOn = AL_TRUE,
|
|
SpatializeAuto = AL_AUTO_SOFT
|
|
};
|
|
|
|
enum Resampler {
|
|
PointResampler,
|
|
LinearResampler,
|
|
FIR4Resampler,
|
|
BSinc12Resampler,
|
|
BSinc24Resampler,
|
|
|
|
ResamplerMax = BSinc24Resampler
|
|
};
|
|
extern Resampler ResamplerDefault;
|
|
|
|
/* The number of distinct scale and phase intervals within the bsinc filter
|
|
* table.
|
|
*/
|
|
#define BSINC_SCALE_BITS 4
|
|
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
|
|
#define BSINC_PHASE_BITS 4
|
|
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)
|
|
|
|
/* Interpolator state. Kind of a misnomer since the interpolator itself is
|
|
* stateless. This just keeps it from having to recompute scale-related
|
|
* mappings for every sample.
|
|
*/
|
|
struct BsincState {
|
|
ALfloat sf; /* Scale interpolation factor. */
|
|
ALsizei m; /* Coefficient count. */
|
|
ALsizei l; /* Left coefficient offset. */
|
|
/* Filter coefficients, followed by the scale, phase, and scale-phase
|
|
* delta coefficients. Starting at phase index 0, each subsequent phase
|
|
* index follows contiguously.
|
|
*/
|
|
const ALfloat *filter;
|
|
};
|
|
|
|
union InterpState {
|
|
BsincState bsinc;
|
|
};
|
|
|
|
using ResamplerFunc = const ALfloat*(*)(const InterpState *state,
|
|
const ALfloat *RESTRICT src, ALsizei frac, ALint increment,
|
|
ALfloat *RESTRICT dst, ALsizei dstlen);
|
|
|
|
void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table);
|
|
|
|
extern const BSincTable bsinc12;
|
|
extern const BSincTable bsinc24;
|
|
|
|
|
|
enum {
|
|
AF_None = 0,
|
|
AF_LowPass = 1,
|
|
AF_HighPass = 2,
|
|
AF_BandPass = AF_LowPass | AF_HighPass
|
|
};
|
|
|
|
|
|
struct MixHrtfParams {
|
|
const ALfloat (*Coeffs)[HRIR_LENGTH][2];
|
|
ALsizei Delay[2];
|
|
ALfloat Gain;
|
|
ALfloat GainStep;
|
|
};
|
|
|
|
|
|
struct DirectParams {
|
|
BiquadFilter LowPass;
|
|
BiquadFilter HighPass;
|
|
|
|
NfcFilter NFCtrlFilter;
|
|
|
|
struct {
|
|
HrtfParams Old;
|
|
HrtfParams Target;
|
|
HrtfState State;
|
|
} Hrtf;
|
|
|
|
struct {
|
|
ALfloat Current[MAX_OUTPUT_CHANNELS];
|
|
ALfloat Target[MAX_OUTPUT_CHANNELS];
|
|
} Gains;
|
|
};
|
|
|
|
struct SendParams {
|
|
BiquadFilter LowPass;
|
|
BiquadFilter HighPass;
|
|
|
|
struct {
|
|
ALfloat Current[MAX_OUTPUT_CHANNELS];
|
|
ALfloat Target[MAX_OUTPUT_CHANNELS];
|
|
} Gains;
|
|
};
|
|
|
|
|
|
struct ALvoicePropsBase {
|
|
ALfloat Pitch;
|
|
ALfloat Gain;
|
|
ALfloat OuterGain;
|
|
ALfloat MinGain;
|
|
ALfloat MaxGain;
|
|
ALfloat InnerAngle;
|
|
ALfloat OuterAngle;
|
|
ALfloat RefDistance;
|
|
ALfloat MaxDistance;
|
|
ALfloat RolloffFactor;
|
|
std::array<ALfloat,3> Position;
|
|
std::array<ALfloat,3> Velocity;
|
|
std::array<ALfloat,3> Direction;
|
|
std::array<ALfloat,3> OrientAt;
|
|
std::array<ALfloat,3> OrientUp;
|
|
ALboolean HeadRelative;
|
|
DistanceModel mDistanceModel;
|
|
Resampler mResampler;
|
|
ALboolean DirectChannels;
|
|
SpatializeMode mSpatializeMode;
|
|
|
|
ALboolean DryGainHFAuto;
|
|
ALboolean WetGainAuto;
|
|
ALboolean WetGainHFAuto;
|
|
ALfloat OuterGainHF;
|
|
|
|
ALfloat AirAbsorptionFactor;
|
|
ALfloat RoomRolloffFactor;
|
|
ALfloat DopplerFactor;
|
|
|
|
std::array<ALfloat,2> StereoPan;
|
|
|
|
ALfloat Radius;
|
|
|
|
/** Direct filter and auxiliary send info. */
|
|
struct {
|
|
ALfloat Gain;
|
|
ALfloat GainHF;
|
|
ALfloat HFReference;
|
|
ALfloat GainLF;
|
|
ALfloat LFReference;
|
|
} Direct;
|
|
struct SendData {
|
|
ALeffectslot *Slot;
|
|
ALfloat Gain;
|
|
ALfloat GainHF;
|
|
ALfloat HFReference;
|
|
ALfloat GainLF;
|
|
ALfloat LFReference;
|
|
} Send[MAX_SENDS];
|
|
};
|
|
|
|
struct ALvoiceProps : public ALvoicePropsBase {
|
|
std::atomic<ALvoiceProps*> next{nullptr};
|
|
|
|
DEF_NEWDEL(ALvoiceProps)
|
|
};
|
|
|
|
#define VOICE_IS_STATIC (1<<0)
|
|
#define VOICE_IS_FADING (1<<1) /* Fading sources use gain stepping for smooth transitions. */
|
|
#define VOICE_HAS_HRTF (1<<2)
|
|
#define VOICE_HAS_NFC (1<<3)
|
|
|
|
struct ALvoice {
|
|
std::atomic<ALvoiceProps*> Update{nullptr};
|
|
|
|
std::atomic<ALuint> SourceID{0u};
|
|
std::atomic<bool> Playing{false};
|
|
|
|
ALvoicePropsBase Props;
|
|
|
|
/**
|
|
* Source offset in samples, relative to the currently playing buffer, NOT
|
|
* the whole queue, and the fractional (fixed-point) offset to the next
|
|
* sample.
|
|
*/
|
|
std::atomic<ALuint> position;
|
|
std::atomic<ALsizei> position_fraction;
|
|
|
|
/* Current buffer queue item being played. */
|
|
std::atomic<ALbufferlistitem*> current_buffer;
|
|
|
|
/* Buffer queue item to loop to at end of queue (will be NULL for non-
|
|
* looping voices).
|
|
*/
|
|
std::atomic<ALbufferlistitem*> loop_buffer;
|
|
|
|
/**
|
|
* Number of channels and bytes-per-sample for the attached source's
|
|
* buffer(s).
|
|
*/
|
|
ALsizei NumChannels;
|
|
ALsizei SampleSize;
|
|
|
|
/** Current target parameters used for mixing. */
|
|
ALint Step;
|
|
|
|
ResamplerFunc Resampler;
|
|
|
|
ALuint Flags;
|
|
|
|
ALuint Offset; /* Number of output samples mixed since starting. */
|
|
|
|
alignas(16) std::array<std::array<ALfloat,MAX_RESAMPLE_PADDING>,MAX_INPUT_CHANNELS> PrevSamples;
|
|
|
|
InterpState ResampleState;
|
|
|
|
struct {
|
|
int FilterType;
|
|
DirectParams Params[MAX_INPUT_CHANNELS];
|
|
|
|
ALfloat (*Buffer)[BUFFERSIZE];
|
|
ALsizei Channels;
|
|
ALsizei ChannelsPerOrder[MAX_AMBI_ORDER+1];
|
|
} Direct;
|
|
|
|
struct SendData {
|
|
int FilterType;
|
|
SendParams Params[MAX_INPUT_CHANNELS];
|
|
|
|
ALfloat (*Buffer)[BUFFERSIZE];
|
|
ALsizei Channels;
|
|
};
|
|
al::FlexArray<SendData> Send;
|
|
|
|
ALvoice(size_t numsends) : Send{numsends} { }
|
|
ALvoice(const ALvoice&) = delete;
|
|
ALvoice& operator=(const ALvoice&) = delete;
|
|
|
|
static constexpr size_t Sizeof(size_t numsends) noexcept
|
|
{
|
|
return maxz(sizeof(ALvoice),
|
|
al::FlexArray<SendData>::Sizeof(numsends, offsetof(ALvoice, Send)));
|
|
}
|
|
};
|
|
|
|
void DeinitVoice(ALvoice *voice) noexcept;
|
|
|
|
|
|
using MixerFunc = void(*)(const ALfloat *data, const ALsizei OutChans,
|
|
ALfloat (*OutBuffer)[BUFFERSIZE], ALfloat *CurrentGains, const ALfloat *TargetGains,
|
|
const ALsizei Counter, const ALsizei OutPos, const ALsizei BufferSize);
|
|
using RowMixerFunc = void(*)(ALfloat *OutBuffer, const ALfloat *gains,
|
|
const ALfloat (*data)[BUFFERSIZE], const ALsizei InChans, const ALsizei InPos,
|
|
const ALsizei BufferSize);
|
|
using HrtfMixerFunc = void(*)(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat *data, ALsizei Offset, const ALsizei OutPos, const ALsizei IrSize,
|
|
MixHrtfParams *hrtfparams, HrtfState *hrtfstate, const ALsizei BufferSize);
|
|
using HrtfMixerBlendFunc = void(*)(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat *data, ALsizei Offset, const ALsizei OutPos, const ALsizei IrSize,
|
|
const HrtfParams *oldparams, MixHrtfParams *newparams, HrtfState *hrtfstate,
|
|
const ALsizei BufferSize);
|
|
using HrtfDirectMixerFunc = void(*)(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat (*data)[BUFFERSIZE], DirectHrtfState *State, const ALsizei NumChans,
|
|
const ALsizei BufferSize);
|
|
|
|
|
|
#define GAIN_MIX_MAX (1000.0f) /* +60dB */
|
|
|
|
#define GAIN_SILENCE_THRESHOLD (0.00001f) /* -100dB */
|
|
|
|
#define SPEEDOFSOUNDMETRESPERSEC (343.3f)
|
|
#define AIRABSORBGAINHF (0.99426f) /* -0.05dB */
|
|
|
|
/* Target gain for the reverb decay feedback reaching the decay time. */
|
|
#define REVERB_DECAY_GAIN (0.001f) /* -60 dB */
|
|
|
|
#define FRACTIONBITS (12)
|
|
#define FRACTIONONE (1<<FRACTIONBITS)
|
|
#define FRACTIONMASK (FRACTIONONE-1)
|
|
|
|
|
|
inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu) noexcept
|
|
{ return val1 + (val2-val1)*mu; }
|
|
inline ALfloat cubic(ALfloat val1, ALfloat val2, ALfloat val3, ALfloat val4, ALfloat mu) noexcept
|
|
{
|
|
ALfloat mu2 = mu*mu, mu3 = mu2*mu;
|
|
ALfloat a0 = -0.5f*mu3 + mu2 + -0.5f*mu;
|
|
ALfloat a1 = 1.5f*mu3 + -2.5f*mu2 + 1.0f;
|
|
ALfloat a2 = -1.5f*mu3 + 2.0f*mu2 + 0.5f*mu;
|
|
ALfloat a3 = 0.5f*mu3 + -0.5f*mu2;
|
|
return val1*a0 + val2*a1 + val3*a2 + val4*a3;
|
|
}
|
|
|
|
|
|
enum HrtfRequestMode {
|
|
Hrtf_Default = 0,
|
|
Hrtf_Enable = 1,
|
|
Hrtf_Disable = 2,
|
|
};
|
|
|
|
void aluInit(void);
|
|
|
|
void aluInitMixer(void);
|
|
|
|
ResamplerFunc SelectResampler(Resampler resampler);
|
|
|
|
/* aluInitRenderer
|
|
*
|
|
* Set up the appropriate panning method and mixing method given the device
|
|
* properties.
|
|
*/
|
|
void aluInitRenderer(ALCdevice *device, ALint hrtf_id, HrtfRequestMode hrtf_appreq, HrtfRequestMode hrtf_userreq);
|
|
|
|
void aluInitEffectPanning(ALeffectslot *slot);
|
|
|
|
void aluSelectPostProcess(ALCdevice *device);
|
|
|
|
/**
|
|
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
|
|
* components, which must represent a normalized (unit length) vector, and the
|
|
* spread is the angular width of the sound (0...tau).
|
|
*
|
|
* NOTE: The components use ambisonic coordinates. As a result:
|
|
*
|
|
* Ambisonic Y = OpenAL -X
|
|
* Ambisonic Z = OpenAL Y
|
|
* Ambisonic X = OpenAL -Z
|
|
*
|
|
* The components are ordered such that OpenAL's X, Y, and Z are the first,
|
|
* second, and third parameters respectively -- simply negate X and Z.
|
|
*/
|
|
void CalcAmbiCoeffs(const ALfloat y, const ALfloat z, const ALfloat x, const ALfloat spread,
|
|
ALfloat (&coeffs)[MAX_AMBI_COEFFS]);
|
|
|
|
/**
|
|
* CalcDirectionCoeffs
|
|
*
|
|
* Calculates ambisonic coefficients based on an OpenAL direction vector. The
|
|
* vector must be normalized (unit length), and the spread is the angular width
|
|
* of the sound (0...tau).
|
|
*/
|
|
inline void CalcDirectionCoeffs(const ALfloat (&dir)[3], ALfloat spread, ALfloat (&coeffs)[MAX_AMBI_COEFFS])
|
|
{
|
|
/* Convert from OpenAL coords to Ambisonics. */
|
|
CalcAmbiCoeffs(-dir[0], dir[1], -dir[2], spread, coeffs);
|
|
}
|
|
|
|
/**
|
|
* CalcAngleCoeffs
|
|
*
|
|
* Calculates ambisonic coefficients based on azimuth and elevation. The
|
|
* azimuth and elevation parameters are in radians, going right and up
|
|
* respectively.
|
|
*/
|
|
inline void CalcAngleCoeffs(ALfloat azimuth, ALfloat elevation, ALfloat spread, ALfloat (&coeffs)[MAX_AMBI_COEFFS])
|
|
{
|
|
ALfloat x = -std::sin(azimuth) * std::cos(elevation);
|
|
ALfloat y = std::sin(elevation);
|
|
ALfloat z = std::cos(azimuth) * std::cos(elevation);
|
|
|
|
CalcAmbiCoeffs(x, y, z, spread, coeffs);
|
|
}
|
|
|
|
/**
|
|
* ScaleAzimuthFront
|
|
*
|
|
* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
|
|
* front.
|
|
*/
|
|
inline float ScaleAzimuthFront(float azimuth, float scale)
|
|
{
|
|
ALfloat sign = std::copysign(1.0f, azimuth);
|
|
if(!(std::fabs(azimuth) > al::MathDefs<float>::Pi()*0.5f))
|
|
return minf(std::fabs(azimuth) * scale, al::MathDefs<float>::Pi()*0.5f) * sign;
|
|
return azimuth;
|
|
}
|
|
|
|
|
|
void ComputePanningGainsBF(const BFChannelConfig *chanmap, ALsizei numchans, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS]);
|
|
|
|
/**
|
|
* ComputePanGains
|
|
*
|
|
* Computes panning gains using the given channel decoder coefficients and the
|
|
* pre-calculated direction or angle coefficients. For B-Format sources, the
|
|
* coeffs are a 'slice' of a transform matrix for the input channel, used to
|
|
* scale and orient the sound samples.
|
|
*/
|
|
inline void ComputePanGains(const MixParams *dry, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
ComputePanningGainsBF(dry->AmbiMap.data(), dry->NumChannels, coeffs, ingain, gains);
|
|
}
|
|
|
|
void ComputePanGains(const ALeffectslot *slot, const ALfloat*RESTRICT coeffs, ALfloat ingain, ALfloat (&gains)[MAX_OUTPUT_CHANNELS]);
|
|
|
|
|
|
ALboolean MixSource(ALvoice *voice, const ALuint SourceID, ALCcontext *Context, const ALsizei SamplesToDo);
|
|
|
|
void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples);
|
|
/* Caller must lock the device state, and the mixer must not be running. */
|
|
void aluHandleDisconnect(ALCdevice *device, const char *msg, ...) DECL_FORMAT(printf, 2, 3);
|
|
|
|
extern MixerFunc MixSamples;
|
|
extern RowMixerFunc MixRowSamples;
|
|
|
|
extern const ALfloat ConeScale;
|
|
extern const ALfloat ZScale;
|
|
extern const ALboolean OverrideReverbSpeedOfSound;
|
|
|
|
#endif
|