openal-soft/utils/uhjencoder.cpp
Chris Robinson 9ba489360c Add options to encode 3- and 4-channel UHJ to uhjencoder
The generated files won't play correctly if the player doesn't know they're 3-
and 4-channel UHJ (the third and fourth channels must be ignored, or decoded,
for playback). This is largely just for completion's sake, just in case someone
has a use for it.
2022-02-04 18:05:25 -08:00

508 lines
20 KiB
C++

/*
* 2-channel UHJ Encoder
*
* Copyright (c) Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include <array>
#include <cstring>
#include <inttypes.h>
#include <memory>
#include <stddef.h>
#include <string>
#include <utility>
#include <vector>
#include "almalloc.h"
#include "alnumbers.h"
#include "alspan.h"
#include "opthelpers.h"
#include "phase_shifter.h"
#include "vector.h"
#include "sndfile.h"
#include "win_main_utf8.h"
namespace {
struct SndFileDeleter {
void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
};
using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
using uint = unsigned int;
constexpr uint BufferLineSize{1024};
using FloatBufferLine = std::array<float,BufferLineSize>;
using FloatBufferSpan = al::span<float,BufferLineSize>;
struct UhjEncoder {
constexpr static size_t sFilterDelay{1024};
/* Delays and processing storage for the unfiltered signal. */
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
/* History for the FIR filter. */
alignas(16) std::array<float,sFilterDelay*2 - 1> mWXHistory1{};
alignas(16) std::array<float,sFilterDelay*2 - 1> mWXHistory2{};
alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
void encode(const al::span<FloatBufferLine> OutSamples,
const al::span<FloatBufferLine,4> InSamples, const size_t SamplesToDo);
DEF_NEWDEL(UhjEncoder)
};
const PhaseShifterT<UhjEncoder::sFilterDelay*2> PShift{};
/* Encoding UHJ from B-Format is done as:
*
* S = 0.9396926*W + 0.1855740*X
* D = j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y
*
* Left = (S + D)/2.0
* Right = (S - D)/2.0
* T = j(-0.1432*W + 0.6512*X) - 0.7071068*Y
* Q = 0.9772*Z
*
* where j is a wide-band +90 degree phase shift. T is excluded from 2-channel
* output, and Q is excluded from 2- and 3-channel output.
*/
void UhjEncoder::encode(const al::span<FloatBufferLine> OutSamples,
const al::span<FloatBufferLine,4> InSamples, const size_t SamplesToDo)
{
const float *RESTRICT winput{al::assume_aligned<16>(InSamples[0].data())};
const float *RESTRICT xinput{al::assume_aligned<16>(InSamples[1].data())};
const float *RESTRICT yinput{al::assume_aligned<16>(InSamples[2].data())};
const float *RESTRICT zinput{al::assume_aligned<16>(InSamples[3].data())};
/* Combine the previously delayed S/D signal with the input. */
/* S = 0.9396926*W + 0.1855740*X */
auto miditer = mS.begin() + sFilterDelay;
std::transform(winput, winput+SamplesToDo, xinput, miditer,
[](const float w, const float x) noexcept -> float
{ return 0.9396926f*w + 0.1855740f*x; });
/* D = 0.6554516*Y */
auto sideiter = mD.begin() + sFilterDelay;
std::transform(yinput, yinput+SamplesToDo, sideiter,
[](const float y) noexcept -> float { return 0.6554516f*y; });
/* D += j(-0.3420201*W + 0.5098604*X) */
auto tmpiter = std::copy(mWXHistory1.cbegin(), mWXHistory1.cend(), mTemp.begin());
std::transform(winput, winput+SamplesToDo, xinput, tmpiter,
[](const float w, const float x) noexcept -> float
{ return -0.3420201f*w + 0.5098604f*x; });
std::copy_n(mTemp.cbegin()+SamplesToDo, mWXHistory1.size(), mWXHistory1.begin());
PShift.processAccum({mD.data(), SamplesToDo}, mTemp.data());
/* Left = (S + D)/2.0 */
float *RESTRICT left{al::assume_aligned<16>(OutSamples[0].data())};
for(size_t i{0};i < SamplesToDo;i++)
left[i] = (mS[i] + mD[i]) * 0.5f;
/* Right = (S - D)/2.0 */
float *RESTRICT right{al::assume_aligned<16>(OutSamples[1].data())};
for(size_t i{0};i < SamplesToDo;i++)
right[i] = (mS[i] - mD[i]) * 0.5f;
if(OutSamples.size() > 2)
{
/* T = -0.7071068*Y */
sideiter = mT.begin() + sFilterDelay;
std::transform(yinput, yinput+SamplesToDo, sideiter,
[](const float y) noexcept -> float { return -0.7071068f*y; });
/* T += j(-0.1432*W + 0.6512*X) */
tmpiter = std::copy(mWXHistory2.cbegin(), mWXHistory2.cend(), mTemp.begin());
std::transform(winput, winput+SamplesToDo, xinput, tmpiter,
[](const float w, const float x) noexcept -> float
{ return -0.1432f*w + 0.6512f*x; });
std::copy_n(mTemp.cbegin()+SamplesToDo, mWXHistory2.size(), mWXHistory2.begin());
PShift.processAccum({mT.data(), SamplesToDo}, mTemp.data());
float *RESTRICT t{al::assume_aligned<16>(OutSamples[2].data())};
for(size_t i{0};i < SamplesToDo;i++)
t[i] = mT[i];
}
if(OutSamples.size() > 3)
{
/* Q = 0.9772*Z */
sideiter = mQ.begin() + sFilterDelay;
std::transform(zinput, zinput+SamplesToDo, sideiter,
[](const float z) noexcept -> float { return 0.9772f*z; });
float *RESTRICT q{al::assume_aligned<16>(OutSamples[3].data())};
for(size_t i{0};i < SamplesToDo;i++)
q[i] = mQ[i];
}
/* Copy the future samples to the front for next time. */
std::copy(mS.cbegin()+SamplesToDo, mS.cbegin()+SamplesToDo+sFilterDelay, mS.begin());
std::copy(mD.cbegin()+SamplesToDo, mD.cbegin()+SamplesToDo+sFilterDelay, mD.begin());
std::copy(mT.cbegin()+SamplesToDo, mT.cbegin()+SamplesToDo+sFilterDelay, mT.begin());
std::copy(mQ.cbegin()+SamplesToDo, mQ.cbegin()+SamplesToDo+sFilterDelay, mQ.begin());
}
struct SpeakerPos {
int mChannelID;
float mAzimuth;
float mElevation;
};
/* Azimuth is counter-clockwise. */
constexpr SpeakerPos StereoMap[2]{
{ SF_CHANNEL_MAP_LEFT, 30.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -30.0f, 0.0f },
}, QuadMap[4]{
{ SF_CHANNEL_MAP_LEFT, 45.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -45.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_LEFT, 135.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_RIGHT, -135.0f, 0.0f },
}, X51Map[6]{
{ SF_CHANNEL_MAP_LEFT, 30.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -30.0f, 0.0f },
{ SF_CHANNEL_MAP_CENTER, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_LFE, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_LEFT, 110.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_RIGHT, -110.0f, 0.0f },
}, X51RearMap[6]{
{ SF_CHANNEL_MAP_LEFT, 30.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -30.0f, 0.0f },
{ SF_CHANNEL_MAP_CENTER, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_LFE, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_LEFT, 110.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_RIGHT, -110.0f, 0.0f },
}, X71Map[8]{
{ SF_CHANNEL_MAP_LEFT, 30.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -30.0f, 0.0f },
{ SF_CHANNEL_MAP_CENTER, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_LFE, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_LEFT, 150.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_RIGHT, -150.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_LEFT, 90.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_RIGHT, -90.0f, 0.0f },
}, X714Map[12]{
{ SF_CHANNEL_MAP_LEFT, 30.0f, 0.0f },
{ SF_CHANNEL_MAP_RIGHT, -30.0f, 0.0f },
{ SF_CHANNEL_MAP_CENTER, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_LFE, 0.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_LEFT, 150.0f, 0.0f },
{ SF_CHANNEL_MAP_REAR_RIGHT, -150.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_LEFT, 90.0f, 0.0f },
{ SF_CHANNEL_MAP_SIDE_RIGHT, -90.0f, 0.0f },
{ SF_CHANNEL_MAP_TOP_FRONT_LEFT, 45.0f, 35.0f },
{ SF_CHANNEL_MAP_TOP_FRONT_RIGHT, -45.0f, 35.0f },
{ SF_CHANNEL_MAP_TOP_REAR_LEFT, 135.0f, 35.0f },
{ SF_CHANNEL_MAP_TOP_REAR_RIGHT, -135.0f, 35.0f },
};
constexpr auto GenCoeffs(double x /*+front*/, double y /*+left*/, double z /*+up*/) noexcept
{
/* Coefficients are +3dB of FuMa. */
return std::array<float,4>{{
1.0f,
static_cast<float>(al::numbers::sqrt2 * x),
static_cast<float>(al::numbers::sqrt2 * y),
static_cast<float>(al::numbers::sqrt2 * z)
}};
}
} // namespace
int main(int argc, char **argv)
{
if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
{
printf("Usage: %s <infile...>\n\n", argv[0]);
return 1;
}
uint uhjchans{2};
size_t num_files{0}, num_encoded{0};
for(int fidx{1};fidx < argc;++fidx)
{
if(strcmp(argv[fidx], "-bhj") == 0)
{
uhjchans = 2;
continue;
}
if(strcmp(argv[fidx], "-thj") == 0)
{
uhjchans = 3;
continue;
}
if(strcmp(argv[fidx], "-phj") == 0)
{
uhjchans = 4;
continue;
}
++num_files;
std::string outname{argv[fidx]};
size_t lastslash{outname.find_last_of('/')};
if(lastslash != std::string::npos)
outname.erase(0, lastslash+1);
size_t extpos{outname.find_last_of('.')};
if(extpos != std::string::npos)
outname.resize(extpos);
outname += ".uhj.flac";
SF_INFO ininfo{};
SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
if(!infile)
{
fprintf(stderr, "Failed to open %s\n", argv[fidx]);
continue;
}
printf("Converting %s to %s...\n", argv[fidx], outname.c_str());
/* Work out the channel map, preferably using the actual channel map
* from the file/format, but falling back to assuming WFX order.
*
* TODO: Map indices when the channel order differs from the virtual
* speaker position maps.
*/
al::span<const SpeakerPos> spkrs;
auto chanmap = std::vector<int>(static_cast<uint>(ininfo.channels), SF_CHANNEL_MAP_INVALID);
if(sf_command(infile.get(), SFC_GET_CHANNEL_MAP_INFO, chanmap.data(),
ininfo.channels*int{sizeof(int)}) == SF_TRUE)
{
static const std::array<int,2> stereomap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT}};
static const std::array<int,4> quadmap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT,
SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT}};
static const std::array<int,6> x51map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT,
SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE,
SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT}};
static const std::array<int,6> x51rearmap{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT,
SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE,
SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT}};
static const std::array<int,8> x71map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT,
SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE,
SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT,
SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT}};
static const std::array<int,12> x714map{{SF_CHANNEL_MAP_LEFT, SF_CHANNEL_MAP_RIGHT,
SF_CHANNEL_MAP_CENTER, SF_CHANNEL_MAP_LFE,
SF_CHANNEL_MAP_REAR_LEFT, SF_CHANNEL_MAP_REAR_RIGHT,
SF_CHANNEL_MAP_SIDE_LEFT, SF_CHANNEL_MAP_SIDE_RIGHT,
SF_CHANNEL_MAP_TOP_FRONT_LEFT, SF_CHANNEL_MAP_TOP_FRONT_RIGHT,
SF_CHANNEL_MAP_TOP_REAR_LEFT, SF_CHANNEL_MAP_TOP_REAR_RIGHT}};
static const std::array<int,3> ambi2dmap{{SF_CHANNEL_MAP_AMBISONIC_B_W,
SF_CHANNEL_MAP_AMBISONIC_B_X, SF_CHANNEL_MAP_AMBISONIC_B_Y}};
static const std::array<int,4> ambi3dmap{{SF_CHANNEL_MAP_AMBISONIC_B_W,
SF_CHANNEL_MAP_AMBISONIC_B_X, SF_CHANNEL_MAP_AMBISONIC_B_Y,
SF_CHANNEL_MAP_AMBISONIC_B_Z}};
auto match_chanmap = [](const al::span<int> a, const al::span<const int> b) -> bool
{
return a.size() == b.size()
&& std::mismatch(a.begin(), a.end(), b.begin(), b.end()).first == a.end();
};
if(match_chanmap(chanmap, stereomap))
spkrs = StereoMap;
else if(match_chanmap(chanmap, quadmap))
spkrs = QuadMap;
else if(match_chanmap(chanmap, x51map))
spkrs = X51Map;
else if(match_chanmap(chanmap, x51rearmap))
spkrs = X51RearMap;
else if(match_chanmap(chanmap, x71map))
spkrs = X71Map;
else if(match_chanmap(chanmap, x714map))
spkrs = X714Map;
else if(match_chanmap(chanmap, ambi2dmap) || match_chanmap(chanmap, ambi3dmap))
{
/* Do nothing. */
}
else
{
std::string mapstr;
if(chanmap.size() > 0)
{
mapstr = std::to_string(chanmap[0]);
for(int idx : al::span<int>{chanmap}.subspan<1>())
{
mapstr += ',';
mapstr += std::to_string(idx);
}
}
fprintf(stderr, " ... %zu channels not supported (map: %s)\n", chanmap.size(),
mapstr.c_str());
continue;
}
}
else if(ininfo.channels == 2)
{
fprintf(stderr, " ... assuming WFX order stereo\n");
spkrs = StereoMap;
}
else if(ininfo.channels == 6)
{
fprintf(stderr, " ... assuming WFX order 5.1\n");
spkrs = X51Map;
}
else if(ininfo.channels == 8)
{
fprintf(stderr, " ... assuming WFX order 7.1\n");
spkrs = X71Map;
}
else
{
fprintf(stderr, " ... unmapped %d-channel audio not supported\n", ininfo.channels);
continue;
}
SF_INFO outinfo{};
outinfo.frames = ininfo.frames;
outinfo.samplerate = ininfo.samplerate;
outinfo.channels = static_cast<int>(uhjchans);
outinfo.format = SF_FORMAT_PCM_24 | SF_FORMAT_FLAC;
SndFilePtr outfile{sf_open(outname.c_str(), SFM_WRITE, &outinfo)};
if(!outfile)
{
fprintf(stderr, " ... failed to create %s\n", outname.c_str());
continue;
}
auto encoder = std::make_unique<UhjEncoder>();
auto splbuf = al::vector<FloatBufferLine, 16>(static_cast<uint>(9+ininfo.channels)+uhjchans);
auto ambmem = al::span<FloatBufferLine,4>{&splbuf[0], 4};
auto encmem = al::span<FloatBufferLine,4>{&splbuf[4], 4};
auto srcmem = al::span<float,BufferLineSize>{splbuf[8].data(), BufferLineSize};
auto outmem = al::span<float>{splbuf[9].data(), BufferLineSize*uhjchans};
/* A number of initial samples need to be skipped to cut the lead-in
* from the all-pass filter delay. The same number of samples need to
* be fed through the encoder after reaching the end of the input file
* to ensure none of the original input is lost.
*/
size_t total_wrote{0};
size_t LeadIn{UhjEncoder::sFilterDelay};
sf_count_t LeadOut{UhjEncoder::sFilterDelay};
while(LeadIn > 0 || LeadOut > 0)
{
auto inmem = outmem.data() + outmem.size();
auto sgot = sf_readf_float(infile.get(), inmem, BufferLineSize);
sgot = std::max<sf_count_t>(sgot, 0);
if(sgot < BufferLineSize)
{
const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
std::fill_n(inmem + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
sgot += remaining;
LeadOut -= remaining;
}
for(auto&& buf : ambmem)
buf.fill(0.0f);
auto got = static_cast<size_t>(sgot);
if(spkrs.empty())
{
/* B-Format is already in the correct order. It just needs a
* +3dB boost.
*/
constexpr float scale{al::numbers::sqrt2_v<float>};
const size_t chans{std::min<size_t>(static_cast<uint>(ininfo.channels), 4u)};
for(size_t c{0};c < chans;++c)
{
for(size_t i{0};i < got;++i)
ambmem[c][i] = inmem[i*static_cast<uint>(ininfo.channels)] * scale;
++inmem;
}
}
else for(auto&& spkr : spkrs)
{
/* Skip LFE. Or mix directly into W? Or W+X? */
if(spkr.mChannelID == SF_CHANNEL_MAP_LFE)
{
++inmem;
continue;
}
for(size_t i{0};i < got;++i)
srcmem[i] = inmem[i * static_cast<uint>(ininfo.channels)];
++inmem;
constexpr auto Deg2Rad = al::numbers::pi / 180.0;
const auto coeffs = GenCoeffs(
std::cos(spkr.mAzimuth*Deg2Rad) * std::cos(spkr.mElevation*Deg2Rad),
std::sin(spkr.mAzimuth*Deg2Rad) * std::cos(spkr.mElevation*Deg2Rad),
std::sin(spkr.mElevation*Deg2Rad));
for(size_t c{0};c < 4;++c)
{
for(size_t i{0};i < got;++i)
ambmem[c][i] += srcmem[i] * coeffs[c];
}
}
encoder->encode(encmem.subspan(0, uhjchans), ambmem, got);
if(LeadIn >= got)
{
LeadIn -= got;
continue;
}
got -= LeadIn;
for(size_t c{0};c < uhjchans;++c)
{
constexpr float max_val{8388607.0f / 8388608.0f};
auto clamp = [](float v, float mn, float mx) noexcept
{ return std::min(std::max(v, mn), mx); };
for(size_t i{0};i < got;++i)
outmem[i*uhjchans + c] = clamp(encmem[c][LeadIn+i], -1.0f, max_val);
}
LeadIn = 0;
sf_count_t wrote{sf_writef_float(outfile.get(), outmem.data(),
static_cast<sf_count_t>(got))};
if(wrote < 0)
fprintf(stderr, " ... failed to write samples: %d\n", sf_error(outfile.get()));
else
total_wrote += static_cast<size_t>(wrote);
}
printf(" ... wrote %zu samples (%" PRId64 ").\n", total_wrote, int64_t{ininfo.frames});
++num_encoded;
}
if(num_encoded == 0)
fprintf(stderr, "Failed to encode any input files\n");
else if(num_encoded < num_files)
fprintf(stderr, "Encoded %zu of %zu files\n", num_encoded, num_files);
else
printf("Encoded %s%zu file%s\n", (num_encoded > 1) ? "all " : "", num_encoded,
(num_encoded == 1) ? "" : "s");
return 0;
}