openal-soft/Alc/panning.c
2015-08-22 07:23:43 -07:00

485 lines
18 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2010 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alu.h"
#include "bool.h"
#define ZERO_ORDER_SCALE 0.0f
#define FIRST_ORDER_SCALE 1.0f
#define SECOND_ORDER_SCALE (1.0f / 1.22474f)
#define THIRD_ORDER_SCALE (1.0f / 1.30657f)
void ComputeAmbientGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALuint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
for(i = 0;i < device->NumChannels;i++)
{
// The W coefficients are based on a mathematical average of the
// output, scaled by sqrt(2) to compensate for FuMa-style Ambisonics
// scaling the W channel input by sqrt(0.5). The square root of the
// base average provides for a more perceptual average volume, better
// suited to non-directional gains.
gains[i] = sqrtf(device->AmbiCoeffs[i][0]/1.4142f) * ingain;
}
}
void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat elevation, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALfloat dir[3] = {
sinf(angle) * cosf(elevation),
sinf(elevation),
-cosf(angle) * cosf(elevation)
};
ComputeDirectionalGains(device, dir, ingain, gains);
}
void ComputeDirectionalGains(const ALCdevice *device, const ALfloat dir[3], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALfloat coeffs[MAX_AMBI_COEFFS];
ALuint i, j;
/* Convert from OpenAL coords to Ambisonics. */
ALfloat x = -dir[2];
ALfloat y = -dir[0];
ALfloat z = dir[1];
coeffs[0] = 0.7071f; /* sqrt(1.0 / 2.0) */
coeffs[1] = x; /* X */
coeffs[2] = y; /* Y */
coeffs[3] = z; /* Z */
coeffs[4] = 0.5f * (3.0f*z*z - 1.0f); /* 0.5 * (3*Z*Z - 1) */
coeffs[5] = 2.0f * z * x; /* 2*Z*X */
coeffs[6] = 2.0f * y * z; /* 2*Y*Z */
coeffs[7] = x*x - y*y; /* X*X - Y*Y */
coeffs[8] = 2.0f * x * y; /* 2*X*Y */
coeffs[9] = 0.5f * z * (5.0f*z*z - 3.0f); /* 0.5 * Z * (5*Z*Z - 3) */
coeffs[10] = 0.7262f * x * (5.0f*z*z - 1.0f); /* sqrt(135.0 / 256.0) * X * (5*Z*Z - 1) */
coeffs[11] = 0.7262f * y * (5.0f*z*z - 1.0f); /* sqrt(135.0 / 256.0) * Y * (5*Z*Z - 1) */
coeffs[12] = 2.5981f * z * (x*x - y*y); /* sqrt(27.0 / 4.0) * Z * (X*X - Y*Y) */
coeffs[13] = 5.1962f * x * y * z; /* sqrt(27) * X * Y * Z */
coeffs[14] = x * (x*x - 3.0f*y*y); /* X * (X*X - 3*Y*Y) */
coeffs[15] = y * (3.0f*x*x - y*y); /* Y * (3*X*X - Y*Y) */
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
for(i = 0;i < device->NumChannels;i++)
{
float gain = 0.0f;
for(j = 0;j < MAX_AMBI_COEFFS;j++)
gain += device->AmbiCoeffs[i][j]*coeffs[j];
gains[i] = gain * ingain;
}
}
void ComputeBFormatGains(const ALCdevice *device, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
{
ALuint i, j;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
gains[i] = 0.0f;
for(i = 0;i < device->NumChannels;i++)
{
float scale = device->AmbiScale;
gains[i] += device->AmbiCoeffs[i][0] * mtx[0];
for(j = 1;j < 4;j++)
gains[i] += device->AmbiCoeffs[i][j] * scale * mtx[j];
gains[i] *= ingain;
}
}
DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel)
{
switch(channel)
{
case FrontLeft: return "front-left";
case FrontRight: return "front-right";
case FrontCenter: return "front-center";
case LFE: return "lfe";
case BackLeft: return "back-left";
case BackRight: return "back-right";
case BackCenter: return "back-center";
case SideLeft: return "side-left";
case SideRight: return "side-right";
case TopFrontLeft: return "top-front-left";
case TopFrontRight: return "top-front-right";
case TopBackLeft: return "top-back-left";
case TopBackRight: return "top-back-right";
case BottomFrontLeft: return "bottom-front-left";
case BottomFrontRight: return "bottom-front-right";
case BottomBackLeft: return "bottom-back-left";
case BottomBackRight: return "bottom-back-right";
case Aux0: return "aux-0";
case Aux1: return "aux-1";
case Aux2: return "aux-2";
case Aux3: return "aux-3";
case InvalidChannel: break;
}
return "(unknown)";
}
typedef struct ChannelMap {
enum Channel ChanName;
ChannelConfig Config;
} ChannelMap;
static void SetChannelMap(ALCdevice *device, const ChannelMap *chanmap, size_t count, ALfloat ambiscale)
{
size_t i, j, k;
device->AmbiScale = ambiscale;
for(i = 0;i < MAX_OUTPUT_CHANNELS && device->ChannelName[i] != InvalidChannel;i++)
{
if(device->ChannelName[i] == LFE)
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
device->AmbiCoeffs[i][j] = 0.0f;
continue;
}
for(j = 0;j < count;j++)
{
if(device->ChannelName[i] == chanmap[j].ChanName)
{
for(k = 0;k < MAX_AMBI_COEFFS;++k)
device->AmbiCoeffs[i][k] = chanmap[j].Config[k];
break;
}
}
if(j == count)
ERR("Failed to match %s channel ("SZFMT") in config\n", GetLabelFromChannel(device->ChannelName[i]), i);
}
device->NumChannels = i;
}
static bool LoadChannelSetup(ALCdevice *device)
{
static const enum Channel mono_chans[1] = {
FrontCenter
}, stereo_chans[2] = {
FrontLeft, FrontRight
}, quad_chans[4] = {
FrontLeft, FrontRight,
BackLeft, BackRight
}, surround51_chans[5] = {
FrontLeft, FrontRight, FrontCenter,
SideLeft, SideRight
}, surround51rear_chans[5] = {
FrontLeft, FrontRight, FrontCenter,
BackLeft, BackRight
}, surround61_chans[6] = {
FrontLeft, FrontRight,
FrontCenter, BackCenter,
SideLeft, SideRight
}, surround71_chans[7] = {
FrontLeft, FrontRight, FrontCenter,
BackLeft, BackRight,
SideLeft, SideRight
};
ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
const enum Channel *channels = NULL;
const char *layout = NULL;
ALfloat ambiscale = 1.0f;
size_t count = 0;
int order;
size_t i;
switch(device->FmtChans)
{
case DevFmtMono:
layout = "mono";
channels = mono_chans;
count = COUNTOF(mono_chans);
break;
case DevFmtStereo:
layout = "stereo";
channels = stereo_chans;
count = COUNTOF(stereo_chans);
break;
case DevFmtQuad:
layout = "quad";
channels = quad_chans;
count = COUNTOF(quad_chans);
break;
case DevFmtX51:
layout = "surround51";
channels = surround51_chans;
count = COUNTOF(surround51_chans);
break;
case DevFmtX51Rear:
layout = "surround51rear";
channels = surround51rear_chans;
count = COUNTOF(surround51rear_chans);
break;
case DevFmtX61:
layout = "surround61";
channels = surround61_chans;
count = COUNTOF(surround61_chans);
break;
case DevFmtX71:
layout = "surround71";
channels = surround71_chans;
count = COUNTOF(surround71_chans);
break;
case DevFmtBFormat3D:
break;
}
if(!layout)
return false;
else
{
char name[32];
snprintf(name, sizeof(name), "%s/order", layout);
if(!ConfigValueInt("layouts", name, &order))
return false;
if(order == 3)
ambiscale = THIRD_ORDER_SCALE;
else if(order == 2)
ambiscale = SECOND_ORDER_SCALE;
else if(order == 1)
ambiscale = FIRST_ORDER_SCALE;
else if(order == 0)
ambiscale = ZERO_ORDER_SCALE;
else
{
ERR("Unhandled order value %d (expected 0, 1, 2, or 3) for layout %s\n", order, name);
return false;
}
}
for(i = 0;i < count;i++)
{
const char *channame;
char chanlayout[32];
const char *value;
int props = 0;
char eol = 0;
int j;
chanmap[i].ChanName = channels[i];
channame = GetLabelFromChannel(channels[i]);
snprintf(chanlayout, sizeof(chanlayout), "%s/%s", layout, channame);
if(!ConfigValueStr("layouts", chanlayout, &value))
{
ERR("Missing channel %s\n", channame);
return false;
}
if(order == 3)
props = sscanf(value, " %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %c",
&chanmap[i].Config[0], &chanmap[i].Config[1], &chanmap[i].Config[2], &chanmap[i].Config[3],
&chanmap[i].Config[4], &chanmap[i].Config[5], &chanmap[i].Config[6], &chanmap[i].Config[7],
&chanmap[i].Config[8], &chanmap[i].Config[9], &chanmap[i].Config[10], &chanmap[i].Config[11],
&chanmap[i].Config[12], &chanmap[i].Config[13], &chanmap[i].Config[14], &chanmap[i].Config[15],
&eol
);
else if(order == 2)
props = sscanf(value, " %f %f %f %f %f %f %f %f %f %c",
&chanmap[i].Config[0], &chanmap[i].Config[1], &chanmap[i].Config[2],
&chanmap[i].Config[3], &chanmap[i].Config[4], &chanmap[i].Config[5],
&chanmap[i].Config[6], &chanmap[i].Config[7], &chanmap[i].Config[8],
&eol
);
else if(order == 1)
props = sscanf(value, " %f %f %f %f %c",
&chanmap[i].Config[0], &chanmap[i].Config[1],
&chanmap[i].Config[2], &chanmap[i].Config[3],
&eol
);
else if(order == 0)
props = sscanf(value, " %f %c", &chanmap[i].Config[0], &eol);
if(props == 0)
{
ERR("Failed to parse option %s properties\n", chanlayout);
return false;
}
if(props > (order+1)*(order+1))
{
ERR("Excess elements in option %s (expected %d)\n", chanlayout, (order+1)*(order+1));
return false;
}
for(j = props;j < 16;++j)
chanmap[i].Config[j] = 0.0f;
}
SetChannelMap(device, chanmap, count, ambiscale);
return true;
}
ALvoid aluInitPanning(ALCdevice *device)
{
static const ChannelMap MonoCfg[1] = {
{ FrontCenter, { 1.4142f } },
}, StereoCfg[2] = {
{ FrontLeft, { 0.7071f, 0.0f, 0.5f, 0.0f } },
{ FrontRight, { 0.7071f, 0.0f, -0.5f, 0.0f } },
}, QuadCfg[4] = {
{ FrontLeft, { 0.353553f, 0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
{ FrontRight, { 0.353553f, 0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
{ BackLeft, { 0.353553f, -0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
{ BackRight, { 0.353553f, -0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
}, X51SideCfg[5] = {
{ FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } },
{ FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ SideLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } },
{ SideRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } },
}, X51RearCfg[5] = {
{ FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } },
{ FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ BackLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } },
{ BackRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } },
}, X61Cfg[6] = {
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } },
{ SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } },
{ SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } },
}, X71Cfg[7] = {
{ FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
{ FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
{ FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
{ BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } },
{ BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } },
{ SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } },
{ SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } },
}, BFormat3D[4] = {
{ Aux0, { 1.0f, 0.0f, 0.0f, 0.0f } },
{ Aux1, { 0.0f, 1.0f, 0.0f, 0.0f } },
{ Aux2, { 0.0f, 0.0f, 1.0f, 0.0f } },
{ Aux3, { 0.0f, 0.0f, 0.0f, 1.0f } },
};
const ChannelMap *chanmap = NULL;
ALfloat ambiscale = 1.0f;
size_t count = 0;
device->AmbiScale = 1.0f;
memset(device->AmbiCoeffs, 0, sizeof(device->AmbiCoeffs));
device->NumChannels = 0;
if(device->Hrtf)
{
ALuint i;
count = COUNTOF(BFormat3D);
chanmap = BFormat3D;
ambiscale = 1.0f;
for(i = 0;i < count;i++)
device->ChannelName[i] = chanmap[i].ChanName;
for(;i < MAX_OUTPUT_CHANNELS;i++)
device->ChannelName[i] = InvalidChannel;
SetChannelMap(device, chanmap, count, ambiscale);
{
ALfloat (*coeffs_list[4])[2] = {
device->Hrtf_Params[0].Coeffs, device->Hrtf_Params[1].Coeffs,
device->Hrtf_Params[2].Coeffs, device->Hrtf_Params[3].Coeffs
};
ALuint *delay_list[4] = {
device->Hrtf_Params[0].Delay, device->Hrtf_Params[1].Delay,
device->Hrtf_Params[2].Delay, device->Hrtf_Params[3].Delay
};
GetBFormatHrtfCoeffs(device->Hrtf, 4, coeffs_list, delay_list);
}
return;
}
if(LoadChannelSetup(device))
return;
switch(device->FmtChans)
{
case DevFmtMono:
count = COUNTOF(MonoCfg);
chanmap = MonoCfg;
ambiscale = ZERO_ORDER_SCALE;
break;
case DevFmtStereo:
count = COUNTOF(StereoCfg);
chanmap = StereoCfg;
ambiscale = FIRST_ORDER_SCALE;
break;
case DevFmtQuad:
count = COUNTOF(QuadCfg);
chanmap = QuadCfg;
ambiscale = SECOND_ORDER_SCALE;
break;
case DevFmtX51:
count = COUNTOF(X51SideCfg);
chanmap = X51SideCfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtX51Rear:
count = COUNTOF(X51RearCfg);
chanmap = X51RearCfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtX61:
count = COUNTOF(X61Cfg);
chanmap = X61Cfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtX71:
count = COUNTOF(X71Cfg);
chanmap = X71Cfg;
ambiscale = THIRD_ORDER_SCALE;
break;
case DevFmtBFormat3D:
count = COUNTOF(BFormat3D);
chanmap = BFormat3D;
ambiscale = 1.0f;
break;
}
SetChannelMap(device, chanmap, count, ambiscale);
}