openal-soft/Alc/mixer.c
2010-09-26 13:30:46 -07:00

961 lines
55 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
static __inline ALfloat aluF2F(ALfloat Value)
{
return Value;
}
static __inline ALshort aluF2S(ALfloat Value)
{
ALint i;
if(Value <= -1.0f) i = -32768;
else if(Value >= 1.0f) i = 32767;
else i = (ALint)(Value*32767.0f);
return ((ALshort)i);
}
static __inline ALubyte aluF2UB(ALfloat Value)
{
ALshort i = aluF2S(Value);
return (i>>8)+128;
}
static __inline ALfloat point32(ALfloat val1, ALfloat val2, ALint frac)
{
return val1;
(void)val2;
(void)frac;
}
static __inline ALfloat lerp32(ALfloat val1, ALfloat val2, ALint frac)
{
return val1 + ((val2-val1)*(frac * (1.0f/(1<<FRACTIONBITS))));
}
static __inline ALfloat cos_lerp32(ALfloat val1, ALfloat val2, ALint frac)
{
ALfloat mult = (1.0f-cos(frac * (1.0f/(1<<FRACTIONBITS)) * M_PI)) * 0.5f;
return val1 + ((val2-val1)*mult);
}
static __inline ALfloat point16(ALfloat val1, ALfloat val2, ALint frac)
{
return val1 / 32767.0f;
(void)val2;
(void)frac;
}
static __inline ALfloat lerp16(ALfloat val1, ALfloat val2, ALint frac)
{
val1 += ((val2-val1)*(frac * (1.0f/(1<<FRACTIONBITS))));
return val1 / 32767.0f;
}
static __inline ALfloat cos_lerp16(ALfloat val1, ALfloat val2, ALint frac)
{
ALfloat mult = (1.0f-cos(frac * (1.0f/(1<<FRACTIONBITS)) * M_PI)) * 0.5f;
val1 += ((val2-val1)*mult);
return val1 / 32767.0f;
}
#define DO_MIX_MONO(S,sampler) do { \
ALfloat (*DryBuffer)[OUTPUTCHANNELS]; \
ALfloat *ClickRemoval, *PendingClicks; \
ALuint pos = DataPosInt; \
ALuint frac = DataPosFrac; \
ALfloat DrySend[OUTPUTCHANNELS]; \
FILTER *DryFilter; \
ALuint BufferIdx; \
ALuint i, out; \
ALfloat value; \
\
DryBuffer = Device->DryBuffer; \
ClickRemoval = Device->ClickRemoval; \
PendingClicks = Device->PendingClicks; \
DryFilter = &Source->Params.iirFilter; \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] = Source->Params.DryGains[i]; \
\
if(j == 0) \
{ \
value = sampler##S(Data.p##S[pos], Data.p##S[pos+1], frac); \
\
value = lpFilter4PC(DryFilter, 0, value); \
ClickRemoval[FRONT_LEFT] -= value*DrySend[FRONT_LEFT]; \
ClickRemoval[FRONT_RIGHT] -= value*DrySend[FRONT_RIGHT]; \
ClickRemoval[SIDE_LEFT] -= value*DrySend[SIDE_LEFT]; \
ClickRemoval[SIDE_RIGHT] -= value*DrySend[SIDE_RIGHT]; \
ClickRemoval[BACK_LEFT] -= value*DrySend[BACK_LEFT]; \
ClickRemoval[BACK_RIGHT] -= value*DrySend[BACK_RIGHT]; \
ClickRemoval[FRONT_CENTER] -= value*DrySend[FRONT_CENTER]; \
ClickRemoval[BACK_CENTER] -= value*DrySend[BACK_CENTER]; \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
/* First order interpolator */ \
value = sampler##S(Data.p##S[pos], Data.p##S[pos+1], frac); \
\
/* Direct path final mix buffer and panning */ \
value = lpFilter4P(DryFilter, 0, value); \
DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT]; \
DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT]; \
DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT]; \
DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT]; \
DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT]; \
DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT]; \
DryBuffer[j][FRONT_CENTER] += value*DrySend[FRONT_CENTER]; \
DryBuffer[j][BACK_CENTER] += value*DrySend[BACK_CENTER]; \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
value = sampler##S(Data.p##S[p], Data.p##S[p+1], f); \
\
value = lpFilter4PC(DryFilter, 0, value); \
PendingClicks[FRONT_LEFT] += value*DrySend[FRONT_LEFT]; \
PendingClicks[FRONT_RIGHT] += value*DrySend[FRONT_RIGHT]; \
PendingClicks[SIDE_LEFT] += value*DrySend[SIDE_LEFT]; \
PendingClicks[SIDE_RIGHT] += value*DrySend[SIDE_RIGHT]; \
PendingClicks[BACK_LEFT] += value*DrySend[BACK_LEFT]; \
PendingClicks[BACK_RIGHT] += value*DrySend[BACK_RIGHT]; \
PendingClicks[FRONT_CENTER] += value*DrySend[FRONT_CENTER]; \
PendingClicks[BACK_CENTER] += value*DrySend[BACK_CENTER]; \
} \
\
for(out = 0;out < MAX_SENDS;out++) \
{ \
ALfloat WetSend; \
ALfloat *WetBuffer; \
ALfloat *WetClickRemoval; \
ALfloat *WetPendingClicks; \
FILTER *WetFilter; \
\
if(!Source->Send[out].Slot || \
Source->Send[out].Slot->effect.type == AL_EFFECT_NULL) \
continue; \
\
WetSend = Source->Params.WetGains[out]; \
WetBuffer = Source->Send[out].Slot->WetBuffer; \
WetClickRemoval = Source->Send[out].Slot->ClickRemoval; \
WetPendingClicks = Source->Send[out].Slot->PendingClicks; \
WetFilter = &Source->Params.Send[out].iirFilter; \
\
pos = DataPosInt; \
frac = DataPosFrac; \
j -= BufferSize; \
\
if(j == 0) \
{ \
value = sampler##S(Data.p##S[pos], Data.p##S[pos+1], frac); \
\
value = lpFilter2PC(WetFilter, 0, value); \
WetClickRemoval[0] -= value*WetSend; \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
/* First order interpolator */ \
value = sampler##S(Data.p##S[pos], Data.p##S[pos+1], frac); \
\
/* Room path final mix buffer and panning */ \
value = lpFilter2P(WetFilter, 0, value); \
WetBuffer[j] += value*WetSend; \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
value = sampler##S(Data.p##S[p], Data.p##S[p+1], f); \
\
value = lpFilter2PC(WetFilter, 0, value); \
WetPendingClicks[0] += value*WetSend; \
} \
} \
DataPosInt = pos; \
DataPosFrac = frac; \
} while(0)
#define DO_MIX_STEREO(S,sampler) do { \
const ALfloat scaler = 1.0f/Channels; \
ALfloat (*DryBuffer)[OUTPUTCHANNELS]; \
ALfloat *ClickRemoval, *PendingClicks; \
ALuint pos = DataPosInt; \
ALuint frac = DataPosFrac; \
ALfloat DrySend[OUTPUTCHANNELS]; \
FILTER *DryFilter; \
ALuint BufferIdx; \
ALuint i, out; \
ALfloat value; \
\
DryBuffer = Device->DryBuffer; \
ClickRemoval = Device->ClickRemoval; \
PendingClicks = Device->PendingClicks; \
DryFilter = &Source->Params.iirFilter; \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] = Source->Params.DryGains[i]; \
\
if(j == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter2PC(DryFilter, chans[i]*2, value); \
ClickRemoval[chans[i+0]] -= value*DrySend[chans[i+0]]; \
ClickRemoval[chans[i+2]] -= value*DrySend[chans[i+2]]; \
ClickRemoval[chans[i+4]] -= value*DrySend[chans[i+4]]; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter2P(DryFilter, chans[i]*2, value); \
DryBuffer[j][chans[i+0]] += value*DrySend[chans[i+0]]; \
DryBuffer[j][chans[i+2]] += value*DrySend[chans[i+2]]; \
DryBuffer[j][chans[i+4]] += value*DrySend[chans[i+4]]; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[p*Channels + i], \
Data.p##S[(p+1)*Channels + i], f); \
\
value = lpFilter2PC(DryFilter, chans[i]*2, value); \
PendingClicks[chans[i+0]] += value*DrySend[chans[i+0]]; \
PendingClicks[chans[i+2]] += value*DrySend[chans[i+2]]; \
PendingClicks[chans[i+4]] += value*DrySend[chans[i+4]]; \
} \
} \
\
for(out = 0;out < MAX_SENDS;out++) \
{ \
ALfloat WetSend; \
ALfloat *WetBuffer; \
ALfloat *WetClickRemoval; \
ALfloat *WetPendingClicks; \
FILTER *WetFilter; \
\
if(!Source->Send[out].Slot || \
Source->Send[out].Slot->effect.type == AL_EFFECT_NULL) \
continue; \
\
WetSend = Source->Params.WetGains[out]; \
WetBuffer = Source->Send[out].Slot->WetBuffer; \
WetClickRemoval = Source->Send[out].Slot->ClickRemoval; \
WetPendingClicks = Source->Send[out].Slot->PendingClicks; \
WetFilter = &Source->Params.Send[out].iirFilter; \
\
pos = DataPosInt; \
frac = DataPosFrac; \
j -= BufferSize; \
\
if(j == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter1PC(WetFilter, chans[i], value); \
WetClickRemoval[0] -= value*WetSend * scaler; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter1P(WetFilter, chans[i], value); \
WetBuffer[j] += value*WetSend * scaler; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[p*Channels + i], \
Data.p##S[(p+1)*Channels + i], f); \
\
value = lpFilter1PC(WetFilter, chans[i], value); \
WetPendingClicks[0] += value*WetSend * scaler; \
} \
} \
} \
DataPosInt = pos; \
DataPosFrac = frac; \
} while(0)
#define DO_MIX_MC(S,sampler) do { \
const ALfloat scaler = 1.0f/Channels; \
ALfloat (*DryBuffer)[OUTPUTCHANNELS]; \
ALfloat *ClickRemoval, *PendingClicks; \
ALuint pos = DataPosInt; \
ALuint frac = DataPosFrac; \
ALfloat DrySend[OUTPUTCHANNELS]; \
FILTER *DryFilter; \
ALuint BufferIdx; \
ALuint i, out; \
ALfloat value; \
\
DryBuffer = Device->DryBuffer; \
ClickRemoval = Device->ClickRemoval; \
PendingClicks = Device->PendingClicks; \
DryFilter = &Source->Params.iirFilter; \
for(i = 0;i < OUTPUTCHANNELS;i++) \
DrySend[i] = Source->Params.DryGains[i]; \
\
if(j == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter2PC(DryFilter, chans[i]*2, value); \
ClickRemoval[chans[i]] -= value*DrySend[chans[i]]; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter2P(DryFilter, chans[i]*2, value); \
DryBuffer[j][chans[i]] += value*DrySend[chans[i]]; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[p*Channels + i], \
Data.p##S[(p+1)*Channels + i], f); \
\
value = lpFilter2PC(DryFilter, chans[i]*2, value); \
PendingClicks[chans[i]] += value*DrySend[chans[i]]; \
} \
} \
\
for(out = 0;out < MAX_SENDS;out++) \
{ \
ALfloat WetSend; \
ALfloat *WetBuffer; \
ALfloat *WetClickRemoval; \
ALfloat *WetPendingClicks; \
FILTER *WetFilter; \
\
if(!Source->Send[out].Slot || \
Source->Send[out].Slot->effect.type == AL_EFFECT_NULL) \
continue; \
\
WetSend = Source->Params.WetGains[out]; \
WetBuffer = Source->Send[out].Slot->WetBuffer; \
WetClickRemoval = Source->Send[out].Slot->ClickRemoval; \
WetPendingClicks = Source->Send[out].Slot->PendingClicks; \
WetFilter = &Source->Params.Send[out].iirFilter; \
\
pos = DataPosInt; \
frac = DataPosFrac; \
j -= BufferSize; \
\
if(j == 0) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter1PC(WetFilter, chans[i], value); \
WetClickRemoval[0] -= value*WetSend * scaler; \
} \
} \
for(BufferIdx = 0;BufferIdx < BufferSize;BufferIdx++) \
{ \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[pos*Channels + i], \
Data.p##S[(pos+1)*Channels + i], frac); \
\
value = lpFilter1P(WetFilter, chans[i], value); \
WetBuffer[j] += value*WetSend * scaler; \
} \
\
frac += increment; \
pos += frac>>FRACTIONBITS; \
frac &= FRACTIONMASK; \
j++; \
} \
if(j == SamplesToDo) \
{ \
ALuint p = pos; \
ALuint f = frac; \
if(p >= LoopEnd) \
{ \
ALuint64 pos64 = pos; \
pos64 <<= FRACTIONBITS; \
pos64 += frac; \
pos64 -= increment; \
p = pos64>>FRACTIONBITS; \
f = pos64&FRACTIONMASK; \
} \
for(i = 0;i < Channels;i++) \
{ \
value = sampler##S(Data.p##S[p*Channels + i], \
Data.p##S[(p+1)*Channels + i], f); \
\
value = lpFilter1PC(WetFilter, chans[i], value); \
WetPendingClicks[0] += value*WetSend * scaler; \
} \
} \
} \
DataPosInt = pos; \
DataPosFrac = frac; \
} while(0)
#define MIX_MONO(S) do { \
switch(Source->Resampler) \
{ \
case POINT_RESAMPLER: \
DO_MIX_MONO(S,point); break; \
case LINEAR_RESAMPLER: \
DO_MIX_MONO(S,lerp); break; \
case COSINE_RESAMPLER: \
DO_MIX_MONO(S,cos_lerp); break; \
case RESAMPLER_MIN: \
case RESAMPLER_MAX: \
break; \
} \
} while(0)
#define MIX_STEREO(S) do { \
const int chans[] = { \
FRONT_LEFT, FRONT_RIGHT, \
SIDE_LEFT, SIDE_RIGHT, \
BACK_LEFT, BACK_RIGHT \
}; \
\
switch(Source->Resampler) \
{ \
case POINT_RESAMPLER: \
DO_MIX_STEREO(S,point); break; \
case LINEAR_RESAMPLER: \
DO_MIX_STEREO(S,lerp); break; \
case COSINE_RESAMPLER: \
DO_MIX_STEREO(S,cos_lerp); break; \
case RESAMPLER_MIN: \
case RESAMPLER_MAX: \
break; \
} \
} while(0)
#define MIX_MC(S,...) do { \
const int chans[] = { __VA_ARGS__ }; \
\
switch(Source->Resampler) \
{ \
case POINT_RESAMPLER: \
DO_MIX_MC(S,point); break; \
case LINEAR_RESAMPLER: \
DO_MIX_MC(S,lerp); break; \
case COSINE_RESAMPLER: \
DO_MIX_MC(S,cos_lerp); break; \
case RESAMPLER_MIN: \
case RESAMPLER_MAX: \
break; \
} \
} while(0)
#define MIX(S) do { \
if(Channels == 1) /* Mono */ \
MIX_MONO(S); \
else if(Channels == 2) /* Stereo */ \
MIX_STEREO(S); \
else if(Channels == 4) /* Quad */ \
MIX_MC(S, FRONT_LEFT, FRONT_RIGHT, \
BACK_LEFT, BACK_RIGHT); \
else if(Channels == 6) /* 5.1 */ \
MIX_MC(S, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT); \
else if(Channels == 7) /* 6.1 */ \
MIX_MC(S, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_CENTER, \
SIDE_LEFT, SIDE_RIGHT); \
else if(Channels == 8) /* 7.1 */ \
MIX_MC(S, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT, \
SIDE_LEFT, SIDE_RIGHT); \
} while(0)
ALvoid MixSource(ALsource *Source, ALCdevice *Device, ALuint SamplesToDo)
{
ALbufferlistitem *BufferListItem;
ALint64 DataSize64,DataPos64;
ALint increment;
ALuint DataPosInt, DataPosFrac;
ALuint BuffersPlayed;
ALboolean Looping;
ALenum State;
ALuint i, j;
/* Get source info */
State = Source->state;
BuffersPlayed = Source->BuffersPlayed;
DataPosInt = Source->position;
DataPosFrac = Source->position_fraction;
Looping = Source->bLooping;
/* Get current buffer queue item */
BufferListItem = Source->queue;
for(i = 0;i < BuffersPlayed;i++)
BufferListItem = BufferListItem->next;
j = 0;
do {
const ALbuffer *ALBuffer;
union {
ALfloat *p32;
ALshort *p16;
ALubyte *p8;
} Data = { NULL };
ALuint DataSize = 0;
ALuint LoopStart = 0;
ALuint LoopEnd = 0;
ALuint Channels, Bytes;
ALuint BufferSize;
/* Get buffer info */
if((ALBuffer=BufferListItem->buffer) != NULL)
{
Data.p8 = ALBuffer->data;
DataSize = ALBuffer->size;
DataSize /= aluFrameSizeFromFormat(ALBuffer->format);
Channels = aluChannelsFromFormat(ALBuffer->format);
Bytes = aluBytesFromFormat(ALBuffer->format);
LoopStart = 0;
LoopEnd = DataSize;
if(Looping && Source->lSourceType == AL_STATIC)
{
/* If current pos is beyond the loop range, do not loop */
if(DataPosInt >= LoopEnd)
Looping = AL_FALSE;
else
{
LoopStart = ALBuffer->LoopStart;
LoopEnd = ALBuffer->LoopEnd;
}
}
}
if(DataPosInt >= DataSize)
goto skipmix;
if(BufferListItem->next)
{
ALbuffer *NextBuf = BufferListItem->next->buffer;
if(NextBuf && NextBuf->size)
{
ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
ulExtraSamples = min(NextBuf->size, ulExtraSamples);
memcpy(&Data.p8[DataSize*Channels*Bytes],
NextBuf->data, ulExtraSamples);
}
}
else if(Looping)
{
ALbuffer *NextBuf = Source->queue->buffer;
if(NextBuf && NextBuf->size)
{
ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
ulExtraSamples = min(NextBuf->size, ulExtraSamples);
memcpy(&Data.p8[DataSize*Channels*Bytes],
&((ALubyte*)NextBuf->data)[LoopStart*Channels*Bytes],
ulExtraSamples);
}
}
else
memset(&Data.p8[DataSize*Channels*Bytes], 0, (BUFFER_PADDING*Channels*Bytes));
/* Figure out how many samples we can mix. */
increment = Source->Params.Step;
DataSize64 = LoopEnd;
DataSize64 <<= FRACTIONBITS;
DataPos64 = DataPosInt;
DataPos64 <<= FRACTIONBITS;
DataPos64 += DataPosFrac;
BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
BufferSize = min(BufferSize, (SamplesToDo-j));
if(Bytes == 4) /* 32-bit float */
MIX(32);
else if(Bytes == 2) /* signed 16-bit */
MIX(16);
skipmix:
/* Handle looping sources */
if(DataPosInt >= LoopEnd)
{
if(BufferListItem->next)
{
BufferListItem = BufferListItem->next;
BuffersPlayed++;
DataPosInt -= DataSize;
}
else if(Looping)
{
BufferListItem = Source->queue;
BuffersPlayed = 0;
if(Source->lSourceType == AL_STATIC)
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
else
DataPosInt -= DataSize;
}
else
{
State = AL_STOPPED;
BufferListItem = Source->queue;
BuffersPlayed = Source->BuffersInQueue;
DataPosInt = 0;
DataPosFrac = 0;
}
}
} while(State == AL_PLAYING && j < SamplesToDo);
/* Update source info */
Source->state = State;
Source->BuffersPlayed = BuffersPlayed;
Source->position = DataPosInt;
Source->position_fraction = DataPosFrac;
Source->Buffer = BufferListItem->buffer;
}
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
ALuint SamplesToDo;
ALeffectslot *ALEffectSlot;
ALCcontext **ctx, **ctx_end;
ALsource **src, **src_end;
ALfloat samp;
int fpuState;
ALuint i, j, c;
ALsizei e;
#if defined(HAVE_FESETROUND)
fpuState = fegetround();
fesetround(FE_TOWARDZERO);
#elif defined(HAVE__CONTROLFP)
fpuState = _controlfp(0, 0);
_controlfp(_RC_CHOP, _MCW_RC);
#else
(void)fpuState;
#endif
while(size > 0)
{
/* Setup variables */
SamplesToDo = min(size, BUFFERSIZE);
/* Clear mixing buffer */
memset(device->DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
SuspendContext(NULL);
ctx = device->Contexts;
ctx_end = ctx + device->NumContexts;
while(ctx != ctx_end)
{
SuspendContext(*ctx);
src = (*ctx)->ActiveSources;
src_end = src + (*ctx)->ActiveSourceCount;
while(src != src_end)
{
if((*src)->state != AL_PLAYING)
{
--((*ctx)->ActiveSourceCount);
*src = *(--src_end);
continue;
}
if((*src)->NeedsUpdate)
{
ALsource_Update(*src, *ctx);
(*src)->NeedsUpdate = AL_FALSE;
}
ALsource_Mix(*src, device, SamplesToDo);
src++;
}
/* effect slot processing */
for(e = 0;e < (*ctx)->EffectSlotMap.size;e++)
{
ALEffectSlot = (*ctx)->EffectSlotMap.array[e].value;
for(i = 0;i < SamplesToDo;i++)
{
ALEffectSlot->ClickRemoval[0] -= ALEffectSlot->ClickRemoval[0] / 256.0f;
ALEffectSlot->WetBuffer[i] += ALEffectSlot->ClickRemoval[0];
}
for(i = 0;i < 1;i++)
{
ALEffectSlot->ClickRemoval[i] += ALEffectSlot->PendingClicks[i];
ALEffectSlot->PendingClicks[i] = 0.0f;
}
ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot,
SamplesToDo, ALEffectSlot->WetBuffer,
device->DryBuffer);
for(i = 0;i < SamplesToDo;i++)
ALEffectSlot->WetBuffer[i] = 0.0f;
}
ProcessContext(*ctx);
ctx++;
}
device->SamplesPlayed += SamplesToDo;
ProcessContext(NULL);
//Post processing loop
for(i = 0;i < SamplesToDo;i++)
{
for(c = 0;c < OUTPUTCHANNELS;c++)
{
device->ClickRemoval[c] -= device->ClickRemoval[c] / 256.0f;
device->DryBuffer[i][c] += device->ClickRemoval[c];
}
}
for(i = 0;i < OUTPUTCHANNELS;i++)
{
device->ClickRemoval[i] += device->PendingClicks[i];
device->PendingClicks[i] = 0.0f;
}
switch(device->Format)
{
#define DO_WRITE(T, func, N, ...) do { \
const Channel chans[] = { \
__VA_ARGS__ \
}; \
ALfloat (*DryBuffer)[OUTPUTCHANNELS] = device->DryBuffer; \
ALfloat (*Matrix)[OUTPUTCHANNELS] = device->ChannelMatrix; \
const ALuint *ChanMap = device->DevChannels; \
\
for(i = 0;i < SamplesToDo;i++) \
{ \
for(j = 0;j < N;j++) \
{ \
samp = 0.0f; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
samp += DryBuffer[i][c] * Matrix[c][chans[j]]; \
((T*)buffer)[ChanMap[chans[j]]] = func(samp); \
} \
buffer = ((T*)buffer) + N; \
} \
} while(0)
#define CHECK_WRITE_FORMAT(bits, T, func) \
case AL_FORMAT_MONO##bits: \
DO_WRITE(T, func, 1, FRONT_CENTER); \
break; \
case AL_FORMAT_STEREO##bits: \
if(device->Bs2b) \
{ \
ALfloat (*DryBuffer)[OUTPUTCHANNELS] = device->DryBuffer; \
ALfloat (*Matrix)[OUTPUTCHANNELS] = device->ChannelMatrix; \
const ALuint *ChanMap = device->DevChannels; \
\
for(i = 0;i < SamplesToDo;i++) \
{ \
float samples[2] = { 0.0f, 0.0f }; \
for(c = 0;c < OUTPUTCHANNELS;c++) \
{ \
samples[0] += DryBuffer[i][c]*Matrix[c][FRONT_LEFT]; \
samples[1] += DryBuffer[i][c]*Matrix[c][FRONT_RIGHT]; \
} \
bs2b_cross_feed(device->Bs2b, samples); \
((T*)buffer)[ChanMap[FRONT_LEFT]] = func(samples[0]); \
((T*)buffer)[ChanMap[FRONT_RIGHT]] = func(samples[1]); \
buffer = ((T*)buffer) + 2; \
} \
} \
else \
DO_WRITE(T, func, 2, FRONT_LEFT, FRONT_RIGHT); \
break; \
case AL_FORMAT_QUAD##bits: \
DO_WRITE(T, func, 4, FRONT_LEFT, FRONT_RIGHT, \
BACK_LEFT, BACK_RIGHT); \
break; \
case AL_FORMAT_51CHN##bits: \
DO_WRITE(T, func, 6, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT); \
break; \
case AL_FORMAT_61CHN##bits: \
DO_WRITE(T, func, 7, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, BACK_CENTER, \
SIDE_LEFT, SIDE_RIGHT); \
break; \
case AL_FORMAT_71CHN##bits: \
DO_WRITE(T, func, 8, FRONT_LEFT, FRONT_RIGHT, \
FRONT_CENTER, LFE, \
BACK_LEFT, BACK_RIGHT, \
SIDE_LEFT, SIDE_RIGHT); \
break;
#define AL_FORMAT_MONO32 AL_FORMAT_MONO_FLOAT32
#define AL_FORMAT_STEREO32 AL_FORMAT_STEREO_FLOAT32
CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB)
CHECK_WRITE_FORMAT(16, ALshort, aluF2S)
CHECK_WRITE_FORMAT(32, ALfloat, aluF2F)
#undef AL_FORMAT_STEREO32
#undef AL_FORMAT_MONO32
#undef CHECK_WRITE_FORMAT
#undef DO_WRITE
default:
break;
}
size -= SamplesToDo;
}
#if defined(HAVE_FESETROUND)
fesetround(fpuState);
#elif defined(HAVE__CONTROLFP)
_controlfp(fpuState, 0xfffff);
#endif
}