openal-soft/alc/hrtf.cpp
Chris Robinson 825206bfa2 Apply the ambisonic HF scaling in real-time with HRTF
Rather than applying the HF scale to the IRs necessitating them to be truncated
along with increasing the IR size, it can be applied to the input signal for
the same results. Consequently, the IR size can be notably shortened while
avoiding the extra truncation. In its place, the delayed reversed all-pass
technique can still be used on the input for maintaining phase when applying
the bandsplit/hfscalar filter to the input signal.
2020-05-19 10:27:52 -07:00

1561 lines
53 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "hrtf.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <functional>
#include <fstream>
#include <iterator>
#include <memory>
#include <mutex>
#include <new>
#include <numeric>
#include <type_traits>
#include <utility>
#include "AL/al.h"
#include "alcmain.h"
#include "alconfig.h"
#include "alfstream.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "filters/splitter.h"
#include "logging.h"
#include "math_defs.h"
#include "opthelpers.h"
#include "polyphase_resampler.h"
namespace {
using namespace std::placeholders;
struct HrtfEntry {
std::string mDispName;
std::string mFilename;
};
struct LoadedHrtf {
std::string mFilename;
std::unique_ptr<HrtfStore> mEntry;
};
/* Data set limits must be the same as or more flexible than those defined in
* the makemhr utility.
*/
#define MIN_FD_COUNT (1)
#define MAX_FD_COUNT (16)
#define MIN_FD_DISTANCE (50)
#define MAX_FD_DISTANCE (2500)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (181)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (255)
#define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1)
#define HRIR_DELAY_FRACBITS 2
#define HRIR_DELAY_FRACONE (1<<HRIR_DELAY_FRACBITS)
#define HRIR_DELAY_FRACHALF (HRIR_DELAY_FRACONE>>1)
static_assert(MAX_HRIR_DELAY*HRIR_DELAY_FRACONE < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'};
constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'};
constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'};
constexpr ALchar magicMarker03[8]{'M','i','n','P','H','R','0','3'};
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
constexpr float PassthruCoeff{0.707106781187f/*sqrt(0.5)*/};
std::mutex LoadedHrtfLock;
al::vector<LoadedHrtf> LoadedHrtfs;
std::mutex EnumeratedHrtfLock;
al::vector<HrtfEntry> EnumeratedHrtfs;
class databuf final : public std::streambuf {
int_type underflow() override
{ return traits_type::eof(); }
pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
{
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
char_type *cur;
switch(whence)
{
case std::ios_base::beg:
if(offset < 0 || offset > egptr()-eback())
return traits_type::eof();
cur = eback() + offset;
break;
case std::ios_base::cur:
if((offset >= 0 && offset > egptr()-gptr()) ||
(offset < 0 && -offset > gptr()-eback()))
return traits_type::eof();
cur = gptr() + offset;
break;
case std::ios_base::end:
if(offset > 0 || -offset > egptr()-eback())
return traits_type::eof();
cur = egptr() + offset;
break;
default:
return traits_type::eof();
}
setg(eback(), cur, egptr());
return cur - eback();
}
pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
{
// Simplified version of seekoff
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
return traits_type::eof();
if(pos < 0 || pos > egptr()-eback())
return traits_type::eof();
setg(eback(), eback() + static_cast<size_t>(pos), egptr());
return pos;
}
public:
databuf(const char_type *start_, const char_type *end_) noexcept
{
setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
const_cast<char_type*>(end_));
}
};
class idstream final : public std::istream {
databuf mStreamBuf;
public:
idstream(const char *start_, const char *end_)
: std::istream{nullptr}, mStreamBuf{start_, end_}
{ init(&mStreamBuf); }
};
struct IdxBlend { ALuint idx; float blend; };
/* Calculate the elevation index given the polar elevation in radians. This
* will return an index between 0 and (evcount - 1).
*/
IdxBlend CalcEvIndex(ALuint evcount, float ev)
{
ev = (al::MathDefs<float>::Pi()*0.5f + ev) * static_cast<float>(evcount-1) /
al::MathDefs<float>::Pi();
ALuint idx{float2uint(ev)};
return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
}
/* Calculate the azimuth index given the polar azimuth in radians. This will
* return an index between 0 and (azcount - 1).
*/
IdxBlend CalcAzIndex(ALuint azcount, float az)
{
az = (al::MathDefs<float>::Tau()+az) * static_cast<float>(azcount) /
al::MathDefs<float>::Tau();
ALuint idx{float2uint(az)};
return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
}
} // namespace
/* Calculates static HRIR coefficients and delays for the given polar elevation
* and azimuth in radians. The coefficients are normalized.
*/
void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
float spread, HrirArray &coeffs, const al::span<ALuint,2> delays)
{
const float dirfact{1.0f - (spread / al::MathDefs<float>::Tau())};
const auto *field = Hrtf->field;
const auto *field_end = field + Hrtf->fdCount-1;
size_t ebase{0};
while(distance < field->distance && field != field_end)
{
ebase += field->evCount;
++field;
}
/* Calculate the elevation indices. */
const auto elev0 = CalcEvIndex(field->evCount, elevation);
const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
/* Calculate azimuth indices. */
const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
/* Calculate the HRIR indices to blend. */
const size_t idx[4]{
ir0offset + az0.idx,
ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
ir1offset + az1.idx,
ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
};
/* Calculate bilinear blending weights, attenuated according to the
* directional panning factor.
*/
const float blend[4]{
(1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
(1.0f-elev0.blend) * ( az0.blend) * dirfact,
( elev0.blend) * (1.0f-az1.blend) * dirfact,
( elev0.blend) * ( az1.blend) * dirfact
};
/* Calculate the blended HRIR delays. */
float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]};
delays[0] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE});
d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3];
delays[1] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE});
/* Calculate the blended HRIR coefficients. */
float *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
coeffout[0] = PassthruCoeff * (1.0f-dirfact);
coeffout[1] = PassthruCoeff * (1.0f-dirfact);
std::fill_n(coeffout+2, size_t{HRIR_LENGTH-1}*2, 0.0f);
for(size_t c{0};c < 4;c++)
{
const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())};
const float mult{blend[c]};
auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
{ return src*mult + coeff; };
std::transform(srccoeffs, srccoeffs + HRIR_LENGTH*2, coeffout, coeffout, blend_coeffs);
}
}
std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
{
return std::unique_ptr<DirectHrtfState>{new (FamCount{num_chans}) DirectHrtfState{num_chans}};
}
void DirectHrtfState::build(const HrtfStore *Hrtf, const al::span<const AngularPoint> AmbiPoints,
const float (*AmbiMatrix)[MAX_AMBI_CHANNELS],
const al::span<const float,MAX_AMBI_ORDER+1> AmbiOrderHFGain)
{
using double2 = std::array<double,2>;
struct ImpulseResponse {
const HrirArray &hrir;
ALuint ldelay, rdelay;
};
/* Set this to true for dual-band HRTF processing. May require better
* calculation of the new IR length to deal with the head and tail
* generated by the HF scaling.
*/
constexpr bool DualBand{false};
const double xover_norm{400.0 / Hrtf->sampleRate};
for(size_t i{0};i < mChannels.size();++i)
{
const size_t order{AmbiIndex::OrderFromChannel[i]};
mChannels[i].mSplitter.init(static_cast<float>(xover_norm));
mChannels[i].mHfScale = AmbiOrderHFGain[order];
}
ALuint min_delay{HRTF_HISTORY_LENGTH*HRIR_DELAY_FRACONE};
ALuint max_delay{0};
al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
{
auto &field = Hrtf->field[0];
const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value);
const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)};
const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset};
const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset};
const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value);
const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value);
const size_t idx[4]{
ir0offset + az0.idx,
ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount),
ir1offset + az1.idx,
ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount)
};
const std::array<double,4> blend{{
(1.0-elev0.blend) * (1.0-az0.blend),
(1.0-elev0.blend) * ( az0.blend),
( elev0.blend) * (1.0-az1.blend),
( elev0.blend) * ( az1.blend)
}};
/* The largest blend factor serves as the closest HRIR. */
const size_t irOffset{idx[std::max_element(blend.begin(), blend.end()) - blend.begin()]};
ImpulseResponse res{Hrtf->coeffs[irOffset],
Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]};
min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
return res;
};
std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
auto hrir_delay_round = [](const ALuint d) noexcept -> ALuint
{ return (d+HRIR_DELAY_FRACHALF) >> HRIR_DELAY_FRACBITS; };
/* For dual-band processing, add a 16-sample delay to compensate for the HF
* scale on the minimum-phase response.
*/
constexpr ALuint base_delay{DualBand ? 16 : 0};
BandSplitterR<double> splitter{xover_norm};
auto tmpres = al::vector<std::array<double2,HRIR_LENGTH>>(mChannels.size());
auto tmpflt = al::vector<std::array<double,HRIR_LENGTH*4>>(3);
const al::span<double,HRIR_LENGTH*4> tempir{tmpflt[2]};
for(size_t c{0u};c < AmbiPoints.size();++c)
{
const HrirArray &hrir{impres[c].hrir};
const ALuint ldelay{hrir_delay_round(impres[c].ldelay-min_delay) + base_delay};
const ALuint rdelay{hrir_delay_round(impres[c].rdelay-min_delay) + base_delay};
if /*constexpr*/(!DualBand)
{
for(size_t i{0u};i < mChannels.size();++i)
{
const double mult{AmbiMatrix[c][i]};
const ALuint numirs{HRIR_LENGTH - maxu(ldelay, rdelay)};
ALuint lidx{ldelay}, ridx{rdelay};
for(ALuint j{0};j < numirs;++j)
{
tmpres[i][lidx++][0] += hrir[j][0] * mult;
tmpres[i][ridx++][1] += hrir[j][1] * mult;
}
}
continue;
}
/* For dual-band processing, the HRIR needs to be split into low and
* high frequency responses. The band-splitter alone creates frequency-
* dependent phase-shifts, which is not ideal. To counteract it,
* combine it with a backwards phase-shift.
*/
/* Load the (left) HRIR backwards, into a temp buffer with padding. */
std::fill(tempir.begin(), tempir.end(), 0.0);
std::transform(hrir.crbegin(), hrir.crend(), tempir.begin(),
[](const float2 &ir) noexcept -> double { return ir[0]; });
/* Apply the all-pass on the reversed signal and reverse the resulting
* sample array. This produces the forward response with a backwards
* phase-shift (+n degrees becomes -n degrees).
*/
splitter.applyAllpass(tempir);
std::reverse(tempir.begin(), tempir.end());
/* Now apply the band-splitter. This applies the normal phase-shift,
* which cancels out with the backwards phase-shift to get the original
* phase on the split signal.
*/
splitter.clear();
splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
/* Apply left ear response with delay and HF scale. */
for(size_t i{0u};i < mChannels.size();++i)
{
const double mult{AmbiMatrix[c][i]};
const double hfgain{AmbiOrderHFGain[AmbiIndex::OrderFromChannel[i]]};
size_t j{tmpflt[0].size()-HRIR_LENGTH - ldelay};
for(size_t lidx{0};lidx < HRIR_LENGTH;++lidx,++j)
tmpres[i][lidx][0] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
}
/* Now run the same process on the right HRIR. */
std::fill(tempir.begin(), tempir.end(), 0.0);
std::transform(hrir.crbegin(), hrir.crend(), tempir.begin(),
[](const float2 &ir) noexcept -> double { return ir[1]; });
splitter.applyAllpass(tempir);
std::reverse(tempir.begin(), tempir.end());
splitter.clear();
splitter.process(tempir, tmpflt[0].data(), tmpflt[1].data());
for(size_t i{0u};i < mChannels.size();++i)
{
const double mult{AmbiMatrix[c][i]};
const double hfgain{AmbiOrderHFGain[AmbiIndex::OrderFromChannel[i]]};
size_t j{tmpflt[0].size()-HRIR_LENGTH - rdelay};
for(size_t ridx{0};ridx < HRIR_LENGTH;++ridx,++j)
tmpres[i][ridx][1] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult;
}
}
tmpflt.clear();
impres.clear();
for(size_t i{0u};i < mChannels.size();++i)
{
auto copy_arr = [](const double2 &in) noexcept -> float2
{ return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(),
copy_arr);
}
tmpres.clear();
max_delay -= min_delay;
/* Increase the IR size by double the base delay with dual-band processing
* to account for the head and tail from the HF response scale.
*/
const ALuint irsize{minu(Hrtf->irSize + base_delay*2, HRIR_LENGTH)};
const ALuint max_length{minu(hrir_delay_round(max_delay) + irsize, HRIR_LENGTH)};
TRACE("Skipped delay: %.2f, max delay: %.2f, new FIR length: %u\n",
min_delay/double{HRIR_DELAY_FRACONE}, max_delay/double{HRIR_DELAY_FRACONE},
max_length);
mIrSize = max_length;
}
namespace {
std::unique_ptr<HrtfStore> CreateHrtfStore(ALuint rate, ALushort irSize,
const al::span<const HrtfStore::Field> fields,
const al::span<const HrtfStore::Elevation> elevs, const HrirArray *coeffs,
const ubyte2 *delays, const char *filename)
{
std::unique_ptr<HrtfStore> Hrtf;
const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset};
size_t total{sizeof(HrtfStore)};
total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
total += sizeof(HrtfStore::Field)*fields.size();
total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
total += sizeof(Hrtf->elev[0])*elevs.size();
total = RoundUp(total, 16); /* Align for coefficients using SIMD */
total += sizeof(Hrtf->coeffs[0])*irCount;
total += sizeof(Hrtf->delays[0])*irCount;
Hrtf.reset(new (al_calloc(16, total)) HrtfStore{});
if(!Hrtf)
ERR("Out of memory allocating storage for %s.\n", filename);
else
{
InitRef(Hrtf->mRef, 1u);
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->fdCount = static_cast<ALuint>(fields.size());
/* Set up pointers to storage following the main HRTF struct. */
char *base = reinterpret_cast<char*>(Hrtf.get());
uintptr_t offset = sizeof(HrtfStore);
offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
offset += sizeof(field_[0])*fields.size();
offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
offset += sizeof(elev_[0])*elevs.size();
offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
offset += sizeof(coeffs_[0])*irCount;
auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
offset += sizeof(delays_[0])*irCount;
assert(offset == total);
/* Copy input data to storage. */
std::copy(fields.cbegin(), fields.cend(), field_);
std::copy(elevs.cbegin(), elevs.cend(), elev_);
std::copy_n(coeffs, irCount, coeffs_);
std::copy_n(delays, irCount, delays_);
/* Finally, assign the storage pointers. */
Hrtf->field = field_;
Hrtf->elev = elev_;
Hrtf->coeffs = coeffs_;
Hrtf->delays = delays_;
}
return Hrtf;
}
void MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs, HrirArray *coeffs,
ubyte2 *delays)
{
for(const auto &elev : elevs)
{
const ALushort evoffset{elev.irOffset};
const ALushort azcount{elev.azCount};
for(size_t j{0};j < azcount;j++)
{
const size_t lidx{evoffset + j};
const size_t ridx{evoffset + ((azcount-j) % azcount)};
const size_t irSize{coeffs[ridx].size()};
for(size_t k{0};k < irSize;k++)
coeffs[ridx][k][1] = coeffs[lidx][k][0];
delays[ridx][1] = delays[lidx][0];
}
}
}
ALubyte GetLE_ALubyte(std::istream &data)
{
return static_cast<ALubyte>(data.get());
}
ALshort GetLE_ALshort(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
return static_cast<ALshort>((ret^32768) - 32768);
}
ALushort GetLE_ALushort(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
return static_cast<ALushort>(ret);
}
int GetLE_ALint24(std::istream &data)
{
int ret = data.get();
ret |= data.get() << 8;
ret |= data.get() << 16;
return (ret^8388608) - 8388608;
}
ALuint GetLE_ALuint(std::istream &data)
{
ALuint ret{static_cast<ALuint>(data.get())};
ret |= static_cast<ALuint>(data.get()) << 8;
ret |= static_cast<ALuint>(data.get()) << 16;
ret |= static_cast<ALuint>(data.get()) << 24;
return ret;
}
std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
{
ALuint rate{GetLE_ALuint(data)};
ALushort irCount{GetLE_ALushort(data)};
ALushort irSize{GetLE_ALushort(data)};
ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
return nullptr;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
return nullptr;
}
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
for(auto &elev : elevs)
elev.irOffset = GetLE_ALushort(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{1};i < evCount;i++)
{
if(elevs[i].irOffset <= elevs[i-1].irOffset)
{
ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset,
elevs[i-1].irOffset);
return nullptr;
}
}
if(irCount <= elevs.back().irOffset)
{
ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
elevs.size()-1, elevs.back().irOffset, irCount);
return nullptr;
}
for(size_t i{1};i < evCount;i++)
{
elevs[i-1].azCount = static_cast<ALushort>(elevs[i].irOffset - elevs[i-1].irOffset);
if(elevs[i-1].azCount < MIN_AZ_COUNT || elevs[i-1].azCount > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
i-1, elevs[i-1].azCount, MIN_AZ_COUNT, MAX_AZ_COUNT);
return nullptr;
}
}
elevs.back().azCount = static_cast<ALushort>(irCount - elevs.back().irOffset);
if(elevs.back().azCount < MIN_AZ_COUNT || elevs.back().azCount > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
elevs.size()-1, elevs.back().azCount, MIN_AZ_COUNT, MAX_AZ_COUNT);
return nullptr;
}
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
auto delays = al::vector<ubyte2>(irCount);
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = GetLE_ALshort(data) / 32768.0f;
}
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irCount;i++)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
return nullptr;
}
delays[i][0] <<= HRIR_DELAY_FRACBITS;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
const HrtfStore::Field field[1]{{0.0f, evCount}};
return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
delays.data(), filename);
}
std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
{
ALuint rate{GetLE_ALuint(data)};
ALushort irSize{GetLE_ALubyte(data)};
ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
return nullptr;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
return nullptr;
}
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
for (auto &elev : elevs) elev.azCount = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < evCount;++i)
{
if(elevs[i].azCount < MIN_AZ_COUNT || elevs[i].azCount > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount,
MIN_AZ_COUNT, MAX_AZ_COUNT);
return nullptr;
}
}
elevs[0].irOffset = 0;
for(size_t i{1};i < evCount;i++)
elevs[i].irOffset = static_cast<ALushort>(elevs[i-1].irOffset + elevs[i-1].azCount);
const ALushort irCount{static_cast<ALushort>(elevs.back().irOffset + elevs.back().azCount)};
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
auto delays = al::vector<ubyte2>(irCount);
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = GetLE_ALshort(data) / 32768.0f;
}
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irCount;i++)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
return nullptr;
}
delays[i][0] <<= HRIR_DELAY_FRACBITS;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
const HrtfStore::Field field[1]{{0.0f, evCount}};
return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
delays.data(), filename);
}
std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
{
constexpr ALubyte SampleType_S16{0};
constexpr ALubyte SampleType_S24{1};
constexpr ALubyte ChanType_LeftOnly{0};
constexpr ALubyte ChanType_LeftRight{1};
ALuint rate{GetLE_ALuint(data)};
ALubyte sampleType{GetLE_ALubyte(data)};
ALubyte channelType{GetLE_ALubyte(data)};
ALushort irSize{GetLE_ALubyte(data)};
ALubyte fdCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(sampleType > SampleType_S24)
{
ERR("Unsupported sample type: %d\n", sampleType);
return nullptr;
}
if(channelType > ChanType_LeftRight)
{
ERR("Unsupported channel type: %d\n", channelType);
return nullptr;
}
if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
return nullptr;
}
if(fdCount < 1 || fdCount > MAX_FD_COUNT)
{
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MIN_FD_COUNT,
MAX_FD_COUNT);
return nullptr;
}
auto fields = al::vector<HrtfStore::Field>(fdCount);
auto elevs = al::vector<HrtfStore::Elevation>{};
for(size_t f{0};f < fdCount;f++)
{
const ALushort distance{GetLE_ALushort(data)};
const ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE)
{
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
MIN_FD_DISTANCE, MAX_FD_DISTANCE);
return nullptr;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
MIN_EV_COUNT, MAX_EV_COUNT);
return nullptr;
}
fields[f].distance = distance / 1000.0f;
fields[f].evCount = evCount;
if(f > 0 && fields[f].distance <= fields[f-1].distance)
{
ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance,
fields[f-1].distance);
return nullptr;
}
const size_t ebase{elevs.size()};
elevs.resize(ebase + evCount);
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
elev.azCount = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t e{0};e < evCount;e++)
{
if(elevs[ebase+e].azCount < MIN_AZ_COUNT || elevs[ebase+e].azCount > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
elevs[ebase+e].azCount, MIN_AZ_COUNT, MAX_AZ_COUNT);
return nullptr;
}
}
}
elevs[0].irOffset = 0;
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ALushort>(last.azCount + last.irOffset)};
});
const auto irTotal = static_cast<ALushort>(elevs.back().azCount + elevs.back().irOffset);
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
auto delays = al::vector<ubyte2>(irTotal);
if(channelType == ChanType_LeftOnly)
{
if(sampleType == SampleType_S16)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = GetLE_ALshort(data) / 32768.0f;
}
}
else if(sampleType == SampleType_S24)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
}
}
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
return nullptr;
}
delays[i][0] <<= HRIR_DELAY_FRACBITS;
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
}
else if(channelType == ChanType_LeftRight)
{
if(sampleType == SampleType_S16)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = GetLE_ALshort(data) / 32768.0f;
val[1] = GetLE_ALshort(data) / 32768.0f;
}
}
}
else if(sampleType == SampleType_S24)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
val[1] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
}
}
}
for(auto &val : delays)
{
val[0] = GetLE_ALubyte(data);
val[1] = GetLE_ALubyte(data);
}
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY);
return nullptr;
}
if(delays[i][1] > MAX_HRIR_DELAY)
{
ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY);
return nullptr;
}
delays[i][0] <<= HRIR_DELAY_FRACBITS;
delays[i][1] <<= HRIR_DELAY_FRACBITS;
}
}
if(fdCount > 1)
{
auto fields_ = al::vector<HrtfStore::Field>(fields.size());
auto elevs_ = al::vector<HrtfStore::Elevation>(elevs.size());
auto coeffs_ = al::vector<HrirArray>(coeffs.size());
auto delays_ = al::vector<ubyte2>(delays.size());
/* Simple reverse for the per-field elements. */
std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin());
/* Each field has a group of elevations, which each have an azimuth
* count. Reverse the order of the groups, keeping the relative order
* of per-group azimuth counts.
*/
auto elevs__end = elevs_.end();
auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field)
-> ptrdiff_t
{
auto elevs_src = elevs.begin()+ebase;
elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end);
return ebase + field.evCount;
};
std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs);
assert(elevs_.begin() == elevs__end);
/* Reestablish the IR offset for each elevation index, given the new
* ordering of elevations.
*/
elevs_[0].irOffset = 0;
std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ALushort>(last.azCount + last.irOffset)};
});
/* Reverse the order of each field's group of IRs. */
auto coeffs_end = coeffs_.end();
auto delays_end = delays_.end();
auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end](
const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t
{
auto accum_az = [](ALsizei count, const HrtfStore::Elevation &elev) noexcept -> ALsizei
{ return count + elev.azCount; };
const auto elevs_mid = elevs.cbegin() + ebase;
const auto elevs_end = elevs_mid + field.evCount;
const ALsizei abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)};
const ALsizei num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)};
coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
coeffs.cbegin() + (abase+num_azs), coeffs_end);
delays_end = std::copy_backward(delays.cbegin() + abase,
delays.cbegin() + (abase+num_azs), delays_end);
return ebase + field.evCount;
};
std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs);
assert(coeffs_.begin() == coeffs_end);
assert(delays_.begin() == delays_end);
fields = std::move(fields_);
elevs = std::move(elevs_);
coeffs = std::move(coeffs_);
delays = std::move(delays_);
}
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
}
std::unique_ptr<HrtfStore> LoadHrtf03(std::istream &data, const char *filename)
{
constexpr ALubyte ChanType_LeftOnly{0};
constexpr ALubyte ChanType_LeftRight{1};
ALuint rate{GetLE_ALuint(data)};
ALubyte channelType{GetLE_ALubyte(data)};
ALushort irSize{GetLE_ALubyte(data)};
ALubyte fdCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(channelType > ChanType_LeftRight)
{
ERR("Unsupported channel type: %d\n", channelType);
return nullptr;
}
if(irSize < MIN_IR_LENGTH || irSize > HRIR_LENGTH)
{
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_LENGTH, HRIR_LENGTH);
return nullptr;
}
if(fdCount < 1 || fdCount > MAX_FD_COUNT)
{
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MIN_FD_COUNT,
MAX_FD_COUNT);
return nullptr;
}
auto fields = al::vector<HrtfStore::Field>(fdCount);
auto elevs = al::vector<HrtfStore::Elevation>{};
for(size_t f{0};f < fdCount;f++)
{
const ALushort distance{GetLE_ALushort(data)};
const ALubyte evCount{GetLE_ALubyte(data)};
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
if(distance < MIN_FD_DISTANCE || distance > MAX_FD_DISTANCE)
{
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
MIN_FD_DISTANCE, MAX_FD_DISTANCE);
return nullptr;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
MIN_EV_COUNT, MAX_EV_COUNT);
return nullptr;
}
fields[f].distance = distance / 1000.0f;
fields[f].evCount = evCount;
if(f > 0 && fields[f].distance > fields[f-1].distance)
{
ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance,
fields[f-1].distance);
return nullptr;
}
const size_t ebase{elevs.size()};
elevs.resize(ebase + evCount);
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
elev.azCount = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t e{0};e < evCount;e++)
{
if(elevs[ebase+e].azCount < MIN_AZ_COUNT || elevs[ebase+e].azCount > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
elevs[ebase+e].azCount, MIN_AZ_COUNT, MAX_AZ_COUNT);
return nullptr;
}
}
}
elevs[0].irOffset = 0;
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
-> HrtfStore::Elevation
{
return HrtfStore::Elevation{cur.azCount,
static_cast<ALushort>(last.azCount + last.irOffset)};
});
const auto irTotal = static_cast<ALushort>(elevs.back().azCount + elevs.back().irOffset);
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
auto delays = al::vector<ubyte2>(irTotal);
if(channelType == ChanType_LeftOnly)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
}
for(auto &val : delays)
val[0] = GetLE_ALubyte(data);
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY<<HRIR_DELAY_FRACBITS)
{
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
delays[i][0] / float{HRIR_DELAY_FRACONE}, MAX_HRIR_DELAY);
return nullptr;
}
}
/* Mirror the left ear responses to the right ear. */
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
}
else if(channelType == ChanType_LeftRight)
{
for(auto &hrir : coeffs)
{
for(auto &val : al::span<float2>{hrir.data(), irSize})
{
val[0] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
val[1] = static_cast<float>(GetLE_ALint24(data)) / 8388608.0f;
}
}
for(auto &val : delays)
{
val[0] = GetLE_ALubyte(data);
val[1] = GetLE_ALubyte(data);
}
if(!data || data.eof())
{
ERR("Failed reading %s\n", filename);
return nullptr;
}
for(size_t i{0};i < irTotal;++i)
{
if(delays[i][0] > MAX_HRIR_DELAY<<HRIR_DELAY_FRACBITS)
{
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
delays[i][0] / float{HRIR_DELAY_FRACONE}, MAX_HRIR_DELAY);
return nullptr;
}
if(delays[i][1] > MAX_HRIR_DELAY<<HRIR_DELAY_FRACBITS)
{
ERR("Invalid delays[%zu][1]: %f (%d)\n", i,
delays[i][1] / float{HRIR_DELAY_FRACONE}, MAX_HRIR_DELAY);
return nullptr;
}
}
}
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
}
bool checkName(const std::string &name)
{
auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
auto &enum_names = EnumeratedHrtfs;
return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
}
void AddFileEntry(const std::string &filename)
{
/* Check if this file has already been enumerated. */
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&filename](const HrtfEntry &entry) -> bool
{ return entry.mFilename == filename; });
if(enum_iter != EnumeratedHrtfs.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
size_t namepos = filename.find_last_of('/')+1;
if(!namepos) namepos = filename.find_last_of('\\')+1;
size_t extpos{filename.find_last_of('.')};
if(extpos <= namepos) extpos = std::string::npos;
const std::string basename{(extpos == std::string::npos) ?
filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
std::string newname{basename};
int count{1};
while(checkName(newname))
{
newname = basename;
newname += " #";
newname += std::to_string(++count);
}
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
const HrtfEntry &entry = EnumeratedHrtfs.back();
TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
}
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
* for input instead of opening the given filename.
*/
void AddBuiltInEntry(const std::string &dispname, ALuint residx)
{
const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&filename](const HrtfEntry &entry) -> bool
{ return entry.mFilename == filename; });
if(enum_iter != EnumeratedHrtfs.cend())
{
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
return;
}
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
* format update). */
std::string newname{dispname};
int count{1};
while(checkName(newname))
{
newname = dispname;
newname += " #";
newname += std::to_string(++count);
}
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
const HrtfEntry &entry = EnumeratedHrtfs.back();
TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
}
#define IDR_DEFAULT_HRTF_MHR 1
#ifndef ALSOFT_EMBED_HRTF_DATA
al::span<const char> GetResource(int /*name*/)
{ return {}; }
#else
#include "hrtf_default.h"
al::span<const char> GetResource(int name)
{
if(name == IDR_DEFAULT_HRTF_MHR)
return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
return {};
}
#endif
} // namespace
al::vector<std::string> EnumerateHrtf(const char *devname)
{
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
EnumeratedHrtfs.clear();
bool usedefaults{true};
if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths"))
{
const char *pathlist{pathopt->c_str()};
while(pathlist && *pathlist)
{
const char *next, *end;
while(isspace(*pathlist) || *pathlist == ',')
pathlist++;
if(*pathlist == '\0')
continue;
next = strchr(pathlist, ',');
if(next)
end = next++;
else
{
end = pathlist + strlen(pathlist);
usedefaults = false;
}
while(end != pathlist && isspace(*(end-1)))
--end;
if(end != pathlist)
{
const std::string pname{pathlist, end};
for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
AddFileEntry(fname);
}
pathlist = next;
}
}
if(usedefaults)
{
for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
AddFileEntry(fname);
if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
}
al::vector<std::string> list;
list.reserve(EnumeratedHrtfs.size());
for(auto &entry : EnumeratedHrtfs)
list.emplace_back(entry.mDispName);
if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf"))
{
auto iter = std::find(list.begin(), list.end(), *defhrtfopt);
if(iter == list.end())
WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str());
else if(iter != list.begin())
std::rotate(list.begin(), iter, iter+1);
}
return list;
}
HrtfStorePtr GetLoadedHrtf(const std::string &name, const char *devname, const ALuint devrate)
{
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
[&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; }
);
if(entry_iter == EnumeratedHrtfs.cend())
return nullptr;
const std::string &fname = entry_iter->mFilename;
std::lock_guard<std::mutex> __{LoadedHrtfLock};
auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
{ return hrtf.mFilename < filename; };
auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
{
HrtfStore *hrtf{handle->mEntry.get()};
if(hrtf && hrtf->sampleRate == devrate)
{
hrtf->add_ref();
return HrtfStorePtr{hrtf};
}
++handle;
}
std::unique_ptr<std::istream> stream;
int residx{};
char ch{};
if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
{
TRACE("Loading %s...\n", fname.c_str());
al::span<const char> res{GetResource(residx)};
if(res.empty())
{
ERR("Could not get resource %u, %s\n", residx, name.c_str());
return nullptr;
}
stream = std::make_unique<idstream>(res.begin(), res.end());
}
else
{
TRACE("Loading %s...\n", fname.c_str());
auto fstr = std::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
if(!fstr->is_open())
{
ERR("Could not open %s\n", fname.c_str());
return nullptr;
}
stream = std::move(fstr);
}
std::unique_ptr<HrtfStore> hrtf;
char magic[sizeof(magicMarker03)];
stream->read(magic, sizeof(magic));
if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker03)))
ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0)
{
TRACE("Detected data set format v3\n");
hrtf = LoadHrtf03(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
{
TRACE("Detected data set format v2\n");
hrtf = LoadHrtf02(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
hrtf = LoadHrtf01(*stream, name.c_str());
}
else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
hrtf = LoadHrtf00(*stream, name.c_str());
}
else
ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
stream.reset();
if(!hrtf)
{
ERR("Failed to load %s\n", name.c_str());
return nullptr;
}
if(hrtf->sampleRate != devrate)
{
/* Calculate the last elevation's index and get the total IR count. */
const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0},
[](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
{ return curval + field.evCount; }
) - 1};
const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount};
/* Resample all the IRs. */
std::array<std::array<double,HRIR_LENGTH>,2> inout;
PPhaseResampler rs;
rs.init(hrtf->sampleRate, devrate);
for(size_t i{0};i < irCount;++i)
{
HrirArray &coeffs = const_cast<HrirArray&>(hrtf->coeffs[i]);
for(size_t j{0};j < 2;++j)
{
std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
[j](const float2 &in) noexcept -> double { return in[j]; });
rs.process(HRIR_LENGTH, inout[0].data(), HRIR_LENGTH, inout[1].data());
for(size_t k{0};k < HRIR_LENGTH;++k)
coeffs[k][j] = static_cast<float>(inout[1][k]);
}
}
rs = {};
/* Scale the delays for the new sample rate. */
float max_delay{0.0f};
auto new_delays = al::vector<float2>(irCount);
const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->sampleRate)};
for(size_t i{0};i < irCount;++i)
{
for(size_t j{0};j < 2;++j)
{
const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) /
float{HRIR_DELAY_FRACONE}};
max_delay = maxf(max_delay, new_delay);
new_delays[i][j] = new_delay;
}
}
/* If the new delays exceed the max, scale it down to fit (essentially
* shrinking the head radius; not ideal but better than a per-delay
* clamp).
*/
float delay_scale{HRIR_DELAY_FRACONE};
if(max_delay > MAX_HRIR_DELAY)
{
WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MAX_HRIR_DELAY);
delay_scale *= float{MAX_HRIR_DELAY} / max_delay;
}
for(size_t i{0};i < irCount;++i)
{
ubyte2 &delays = const_cast<ubyte2&>(hrtf->delays[i]);
for(size_t j{0};j < 2;++j)
delays[j] = static_cast<ALubyte>(float2int(new_delays[i][j] * delay_scale));
}
/* Scale the IR size for the new sample rate and update the stored
* sample rate.
*/
const float newIrSize{std::round(static_cast<float>(hrtf->irSize) * rate_scale)};
hrtf->irSize = static_cast<ALuint>(minf(HRIR_LENGTH, newIrSize));
hrtf->sampleRate = devrate;
}
if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
{
if(*hrtfsizeopt > 0 && *hrtfsizeopt < hrtf->irSize)
hrtf->irSize = maxu(*hrtfsizeopt, MIN_IR_LENGTH);
}
TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
hrtf->sampleRate, hrtf->irSize);
handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)});
return HrtfStorePtr{handle->mEntry.get()};
}
void HrtfStore::add_ref()
{
auto ref = IncrementRef(mRef);
TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
}
void HrtfStore::release()
{
auto ref = DecrementRef(mRef);
TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
if(ref == 0)
{
std::lock_guard<std::mutex> _{LoadedHrtfLock};
/* Go through and remove all unused HRTFs. */
auto remove_unused = [](LoadedHrtf &hrtf) -> bool
{
HrtfStore *entry{hrtf.mEntry.get()};
if(entry && ReadRef(entry->mRef) == 0)
{
TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
hrtf.mEntry = nullptr;
return true;
}
return false;
};
auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
LoadedHrtfs.erase(iter, LoadedHrtfs.end());
}
}