2014-03-28 22:11:34 -07:00

1412 lines
47 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include "alMain.h"
#include "alu.h"
#include "threads.h"
#include "compat.h"
#include "backends/base.h"
#include <alsa/asoundlib.h>
static const ALCchar alsaDevice[] = "ALSA Default";
#ifdef HAVE_DYNLOAD
#define ALSA_FUNCS(MAGIC) \
MAGIC(snd_strerror); \
MAGIC(snd_pcm_open); \
MAGIC(snd_pcm_close); \
MAGIC(snd_pcm_nonblock); \
MAGIC(snd_pcm_frames_to_bytes); \
MAGIC(snd_pcm_bytes_to_frames); \
MAGIC(snd_pcm_hw_params_malloc); \
MAGIC(snd_pcm_hw_params_free); \
MAGIC(snd_pcm_hw_params_any); \
MAGIC(snd_pcm_hw_params_current); \
MAGIC(snd_pcm_hw_params_set_access); \
MAGIC(snd_pcm_hw_params_set_format); \
MAGIC(snd_pcm_hw_params_set_channels); \
MAGIC(snd_pcm_hw_params_set_periods_near); \
MAGIC(snd_pcm_hw_params_set_rate_near); \
MAGIC(snd_pcm_hw_params_set_rate); \
MAGIC(snd_pcm_hw_params_set_rate_resample); \
MAGIC(snd_pcm_hw_params_set_buffer_time_near); \
MAGIC(snd_pcm_hw_params_set_period_time_near); \
MAGIC(snd_pcm_hw_params_set_buffer_size_near); \
MAGIC(snd_pcm_hw_params_set_period_size_near); \
MAGIC(snd_pcm_hw_params_set_buffer_size_min); \
MAGIC(snd_pcm_hw_params_get_buffer_time_min); \
MAGIC(snd_pcm_hw_params_get_buffer_time_max); \
MAGIC(snd_pcm_hw_params_get_period_time_min); \
MAGIC(snd_pcm_hw_params_get_period_time_max); \
MAGIC(snd_pcm_hw_params_get_buffer_size); \
MAGIC(snd_pcm_hw_params_get_period_size); \
MAGIC(snd_pcm_hw_params_get_access); \
MAGIC(snd_pcm_hw_params_get_periods); \
MAGIC(snd_pcm_hw_params_test_format); \
MAGIC(snd_pcm_hw_params_test_channels); \
MAGIC(snd_pcm_hw_params); \
MAGIC(snd_pcm_sw_params_malloc); \
MAGIC(snd_pcm_sw_params_current); \
MAGIC(snd_pcm_sw_params_set_avail_min); \
MAGIC(snd_pcm_sw_params_set_stop_threshold); \
MAGIC(snd_pcm_sw_params); \
MAGIC(snd_pcm_sw_params_free); \
MAGIC(snd_pcm_prepare); \
MAGIC(snd_pcm_start); \
MAGIC(snd_pcm_resume); \
MAGIC(snd_pcm_reset); \
MAGIC(snd_pcm_wait); \
MAGIC(snd_pcm_delay); \
MAGIC(snd_pcm_state); \
MAGIC(snd_pcm_avail_update); \
MAGIC(snd_pcm_areas_silence); \
MAGIC(snd_pcm_mmap_begin); \
MAGIC(snd_pcm_mmap_commit); \
MAGIC(snd_pcm_readi); \
MAGIC(snd_pcm_writei); \
MAGIC(snd_pcm_drain); \
MAGIC(snd_pcm_drop); \
MAGIC(snd_pcm_recover); \
MAGIC(snd_pcm_info_malloc); \
MAGIC(snd_pcm_info_free); \
MAGIC(snd_pcm_info_set_device); \
MAGIC(snd_pcm_info_set_subdevice); \
MAGIC(snd_pcm_info_set_stream); \
MAGIC(snd_pcm_info_get_name); \
MAGIC(snd_ctl_pcm_next_device); \
MAGIC(snd_ctl_pcm_info); \
MAGIC(snd_ctl_open); \
MAGIC(snd_ctl_close); \
MAGIC(snd_ctl_card_info_malloc); \
MAGIC(snd_ctl_card_info_free); \
MAGIC(snd_ctl_card_info); \
MAGIC(snd_ctl_card_info_get_name); \
MAGIC(snd_ctl_card_info_get_id); \
MAGIC(snd_card_next); \
MAGIC(snd_config_update_free_global)
static void *alsa_handle;
#define MAKE_FUNC(f) static __typeof(f) * p##f
ALSA_FUNCS(MAKE_FUNC);
#undef MAKE_FUNC
#define snd_strerror psnd_strerror
#define snd_pcm_open psnd_pcm_open
#define snd_pcm_close psnd_pcm_close
#define snd_pcm_nonblock psnd_pcm_nonblock
#define snd_pcm_frames_to_bytes psnd_pcm_frames_to_bytes
#define snd_pcm_bytes_to_frames psnd_pcm_bytes_to_frames
#define snd_pcm_hw_params_malloc psnd_pcm_hw_params_malloc
#define snd_pcm_hw_params_free psnd_pcm_hw_params_free
#define snd_pcm_hw_params_any psnd_pcm_hw_params_any
#define snd_pcm_hw_params_current psnd_pcm_hw_params_current
#define snd_pcm_hw_params_set_access psnd_pcm_hw_params_set_access
#define snd_pcm_hw_params_set_format psnd_pcm_hw_params_set_format
#define snd_pcm_hw_params_set_channels psnd_pcm_hw_params_set_channels
#define snd_pcm_hw_params_set_periods_near psnd_pcm_hw_params_set_periods_near
#define snd_pcm_hw_params_set_rate_near psnd_pcm_hw_params_set_rate_near
#define snd_pcm_hw_params_set_rate psnd_pcm_hw_params_set_rate
#define snd_pcm_hw_params_set_rate_resample psnd_pcm_hw_params_set_rate_resample
#define snd_pcm_hw_params_set_buffer_time_near psnd_pcm_hw_params_set_buffer_time_near
#define snd_pcm_hw_params_set_period_time_near psnd_pcm_hw_params_set_period_time_near
#define snd_pcm_hw_params_set_buffer_size_near psnd_pcm_hw_params_set_buffer_size_near
#define snd_pcm_hw_params_set_period_size_near psnd_pcm_hw_params_set_period_size_near
#define snd_pcm_hw_params_set_buffer_size_min psnd_pcm_hw_params_set_buffer_size_min
#define snd_pcm_hw_params_get_buffer_time_min psnd_pcm_hw_params_get_buffer_time_min
#define snd_pcm_hw_params_get_buffer_time_max psnd_pcm_hw_params_get_buffer_time_max
#define snd_pcm_hw_params_get_period_time_min psnd_pcm_hw_params_get_period_time_min
#define snd_pcm_hw_params_get_period_time_max psnd_pcm_hw_params_get_period_time_max
#define snd_pcm_hw_params_get_buffer_size psnd_pcm_hw_params_get_buffer_size
#define snd_pcm_hw_params_get_period_size psnd_pcm_hw_params_get_period_size
#define snd_pcm_hw_params_get_access psnd_pcm_hw_params_get_access
#define snd_pcm_hw_params_get_periods psnd_pcm_hw_params_get_periods
#define snd_pcm_hw_params_test_format psnd_pcm_hw_params_test_format
#define snd_pcm_hw_params_test_channels psnd_pcm_hw_params_test_channels
#define snd_pcm_hw_params psnd_pcm_hw_params
#define snd_pcm_sw_params_malloc psnd_pcm_sw_params_malloc
#define snd_pcm_sw_params_current psnd_pcm_sw_params_current
#define snd_pcm_sw_params_set_avail_min psnd_pcm_sw_params_set_avail_min
#define snd_pcm_sw_params_set_stop_threshold psnd_pcm_sw_params_set_stop_threshold
#define snd_pcm_sw_params psnd_pcm_sw_params
#define snd_pcm_sw_params_free psnd_pcm_sw_params_free
#define snd_pcm_prepare psnd_pcm_prepare
#define snd_pcm_start psnd_pcm_start
#define snd_pcm_resume psnd_pcm_resume
#define snd_pcm_reset psnd_pcm_reset
#define snd_pcm_wait psnd_pcm_wait
#define snd_pcm_delay psnd_pcm_delay
#define snd_pcm_state psnd_pcm_state
#define snd_pcm_avail_update psnd_pcm_avail_update
#define snd_pcm_areas_silence psnd_pcm_areas_silence
#define snd_pcm_mmap_begin psnd_pcm_mmap_begin
#define snd_pcm_mmap_commit psnd_pcm_mmap_commit
#define snd_pcm_readi psnd_pcm_readi
#define snd_pcm_writei psnd_pcm_writei
#define snd_pcm_drain psnd_pcm_drain
#define snd_pcm_drop psnd_pcm_drop
#define snd_pcm_recover psnd_pcm_recover
#define snd_pcm_info_malloc psnd_pcm_info_malloc
#define snd_pcm_info_free psnd_pcm_info_free
#define snd_pcm_info_set_device psnd_pcm_info_set_device
#define snd_pcm_info_set_subdevice psnd_pcm_info_set_subdevice
#define snd_pcm_info_set_stream psnd_pcm_info_set_stream
#define snd_pcm_info_get_name psnd_pcm_info_get_name
#define snd_ctl_pcm_next_device psnd_ctl_pcm_next_device
#define snd_ctl_pcm_info psnd_ctl_pcm_info
#define snd_ctl_open psnd_ctl_open
#define snd_ctl_close psnd_ctl_close
#define snd_ctl_card_info_malloc psnd_ctl_card_info_malloc
#define snd_ctl_card_info_free psnd_ctl_card_info_free
#define snd_ctl_card_info psnd_ctl_card_info
#define snd_ctl_card_info_get_name psnd_ctl_card_info_get_name
#define snd_ctl_card_info_get_id psnd_ctl_card_info_get_id
#define snd_card_next psnd_card_next
#define snd_config_update_free_global psnd_config_update_free_global
#endif
static ALCboolean alsa_load(void)
{
ALCboolean error = ALC_FALSE;
#ifdef HAVE_DYNLOAD
if(!alsa_handle)
{
alsa_handle = LoadLib("libasound.so.2");
if(!alsa_handle)
return ALC_FALSE;
error = ALC_FALSE;
#define LOAD_FUNC(f) do { \
p##f = GetSymbol(alsa_handle, #f); \
if(p##f == NULL) { \
error = ALC_TRUE; \
} \
} while(0)
ALSA_FUNCS(LOAD_FUNC);
#undef LOAD_FUNC
if(error)
{
CloseLib(alsa_handle);
alsa_handle = NULL;
return ALC_FALSE;
}
}
#endif
return !error;
}
typedef struct {
ALCchar *name;
char *device;
} DevMap;
static DevMap *allDevNameMap;
static ALuint numDevNames;
static DevMap *allCaptureDevNameMap;
static ALuint numCaptureDevNames;
static const char *prefix_name(snd_pcm_stream_t stream)
{
assert(stream == SND_PCM_STREAM_PLAYBACK || stream == SND_PCM_STREAM_CAPTURE);
return (stream==SND_PCM_STREAM_PLAYBACK) ? "device-prefix" : "capture-prefix";
}
static DevMap *probe_devices(snd_pcm_stream_t stream, ALuint *count)
{
const char *main_prefix = "plughw:";
snd_ctl_t *handle;
int card, err, dev, idx;
snd_ctl_card_info_t *info;
snd_pcm_info_t *pcminfo;
DevMap *DevList;
snd_ctl_card_info_malloc(&info);
snd_pcm_info_malloc(&pcminfo);
DevList = malloc(sizeof(DevMap) * 1);
DevList[0].name = strdup(alsaDevice);
DevList[0].device = strdup(GetConfigValue("alsa", (stream==SND_PCM_STREAM_PLAYBACK) ?
"device" : "capture", "default"));
idx = 1;
card = -1;
if((err=snd_card_next(&card)) < 0)
ERR("Failed to find a card: %s\n", snd_strerror(err));
ConfigValueStr("alsa", prefix_name(stream), &main_prefix);
while(card >= 0)
{
const char *card_prefix = main_prefix;
const char *cardname, *cardid;
char name[256];
snprintf(name, sizeof(name), "hw:%d", card);
if((err = snd_ctl_open(&handle, name, 0)) < 0)
{
ERR("control open (hw:%d): %s\n", card, snd_strerror(err));
goto next_card;
}
if((err = snd_ctl_card_info(handle, info)) < 0)
{
ERR("control hardware info (hw:%d): %s\n", card, snd_strerror(err));
snd_ctl_close(handle);
goto next_card;
}
cardname = snd_ctl_card_info_get_name(info);
cardid = snd_ctl_card_info_get_id(info);
snprintf(name, sizeof(name), "%s-%s", prefix_name(stream), cardid);
ConfigValueStr("alsa", name, &card_prefix);
dev = -1;
while(1)
{
const char *devname;
void *temp;
if(snd_ctl_pcm_next_device(handle, &dev) < 0)
ERR("snd_ctl_pcm_next_device failed\n");
if(dev < 0)
break;
snd_pcm_info_set_device(pcminfo, dev);
snd_pcm_info_set_subdevice(pcminfo, 0);
snd_pcm_info_set_stream(pcminfo, stream);
if((err = snd_ctl_pcm_info(handle, pcminfo)) < 0) {
if(err != -ENOENT)
ERR("control digital audio info (hw:%d): %s\n", card, snd_strerror(err));
continue;
}
temp = realloc(DevList, sizeof(DevMap) * (idx+1));
if(temp)
{
const char *device_prefix = card_prefix;
char device[128];
DevList = temp;
devname = snd_pcm_info_get_name(pcminfo);
snprintf(name, sizeof(name), "%s-%s-%d", prefix_name(stream), cardid, dev);
ConfigValueStr("alsa", name, &device_prefix);
snprintf(name, sizeof(name), "%s, %s (CARD=%s,DEV=%d)",
cardname, devname, cardid, dev);
snprintf(device, sizeof(device), "%sCARD=%s,DEV=%d",
device_prefix, cardid, dev);
TRACE("Got device \"%s\", \"%s\"\n", name, device);
DevList[idx].name = strdup(name);
DevList[idx].device = strdup(device);
idx++;
}
}
snd_ctl_close(handle);
next_card:
if(snd_card_next(&card) < 0) {
ERR("snd_card_next failed\n");
break;
}
}
snd_pcm_info_free(pcminfo);
snd_ctl_card_info_free(info);
*count = idx;
return DevList;
}
static int verify_state(snd_pcm_t *handle)
{
snd_pcm_state_t state = snd_pcm_state(handle);
int err;
switch(state)
{
case SND_PCM_STATE_OPEN:
case SND_PCM_STATE_SETUP:
case SND_PCM_STATE_PREPARED:
case SND_PCM_STATE_RUNNING:
case SND_PCM_STATE_DRAINING:
case SND_PCM_STATE_PAUSED:
/* All Okay */
break;
case SND_PCM_STATE_XRUN:
if((err=snd_pcm_recover(handle, -EPIPE, 1)) < 0)
return err;
break;
case SND_PCM_STATE_SUSPENDED:
if((err=snd_pcm_recover(handle, -ESTRPIPE, 1)) < 0)
return err;
break;
case SND_PCM_STATE_DISCONNECTED:
return -ENODEV;
}
return state;
}
typedef struct ALCplaybackAlsa {
DERIVE_FROM_TYPE(ALCbackend);
snd_pcm_t *pcmHandle;
ALvoid *buffer;
ALsizei size;
volatile int killNow;
althread_t thread;
} ALCplaybackAlsa;
DECLARE_ALCBACKEND_VTABLE(ALCplaybackAlsa);
static ALuint ALCplaybackAlsa_mixerProc(ALvoid *ptr);
static ALuint ALCplaybackAlsa_mixerNoMMapProc(ALvoid *ptr);
static void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device);
static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, Destruct)
static ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name);
static void ALCplaybackAlsa_close(ALCplaybackAlsa *self);
static ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self);
static ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self);
static void ALCplaybackAlsa_stop(ALCplaybackAlsa *self);
static DECLARE_FORWARD2(ALCplaybackAlsa, ALCbackend, ALCenum, captureSamples, void*, ALCuint)
static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, ALCuint, availableSamples)
static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCplaybackAlsa, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCplaybackAlsa)
static void ALCplaybackAlsa_Construct(ALCplaybackAlsa *self, ALCdevice *device)
{
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCplaybackAlsa, ALCbackend, self);
}
static ALuint ALCplaybackAlsa_mixerProc(ALvoid *ptr)
{
ALCplaybackAlsa *self = (ALCplaybackAlsa*)ptr;
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
const snd_pcm_channel_area_t *areas = NULL;
snd_pcm_uframes_t update_size, num_updates;
snd_pcm_sframes_t avail, commitres;
snd_pcm_uframes_t offset, frames;
char *WritePtr;
int err;
SetRTPriority();
SetThreadName(MIXER_THREAD_NAME);
update_size = device->UpdateSize;
num_updates = device->NumUpdates;
while(!self->killNow)
{
int state = verify_state(self->pcmHandle);
if(state < 0)
{
ERR("Invalid state detected: %s\n", snd_strerror(state));
ALCplaybackAlsa_lock(self);
aluHandleDisconnect(device);
ALCplaybackAlsa_unlock(self);
break;
}
avail = snd_pcm_avail_update(self->pcmHandle);
if(avail < 0)
{
ERR("available update failed: %s\n", snd_strerror(avail));
continue;
}
if((snd_pcm_uframes_t)avail > update_size*(num_updates+1))
{
WARN("available samples exceeds the buffer size\n");
snd_pcm_reset(self->pcmHandle);
continue;
}
// make sure there's frames to process
if((snd_pcm_uframes_t)avail < update_size)
{
if(state != SND_PCM_STATE_RUNNING)
{
err = snd_pcm_start(self->pcmHandle);
if(err < 0)
{
ERR("start failed: %s\n", snd_strerror(err));
continue;
}
}
if(snd_pcm_wait(self->pcmHandle, 1000) == 0)
ERR("Wait timeout... buffer size too low?\n");
continue;
}
avail -= avail%update_size;
// it is possible that contiguous areas are smaller, thus we use a loop
ALCplaybackAlsa_lock(self);
while(avail > 0)
{
frames = avail;
err = snd_pcm_mmap_begin(self->pcmHandle, &areas, &offset, &frames);
if(err < 0)
{
ERR("mmap begin error: %s\n", snd_strerror(err));
break;
}
WritePtr = (char*)areas->addr + (offset * areas->step / 8);
aluMixData(device, WritePtr, frames);
commitres = snd_pcm_mmap_commit(self->pcmHandle, offset, frames);
if(commitres < 0 || (commitres-frames) != 0)
{
ERR("mmap commit error: %s\n",
snd_strerror(commitres >= 0 ? -EPIPE : commitres));
break;
}
avail -= frames;
}
ALCplaybackAlsa_unlock(self);
}
return 0;
}
static ALuint ALCplaybackAlsa_mixerNoMMapProc(ALvoid *ptr)
{
ALCplaybackAlsa *self = (ALCplaybackAlsa*)ptr;
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_uframes_t update_size, num_updates;
snd_pcm_sframes_t avail;
char *WritePtr;
int err;
SetRTPriority();
SetThreadName(MIXER_THREAD_NAME);
update_size = device->UpdateSize;
num_updates = device->NumUpdates;
while(!self->killNow)
{
int state = verify_state(self->pcmHandle);
if(state < 0)
{
ERR("Invalid state detected: %s\n", snd_strerror(state));
ALCplaybackAlsa_lock(self);
aluHandleDisconnect(device);
ALCplaybackAlsa_unlock(self);
break;
}
avail = snd_pcm_avail_update(self->pcmHandle);
if(avail < 0)
{
ERR("available update failed: %s\n", snd_strerror(avail));
continue;
}
if((snd_pcm_uframes_t)avail > update_size*num_updates)
{
WARN("available samples exceeds the buffer size\n");
snd_pcm_reset(self->pcmHandle);
continue;
}
if((snd_pcm_uframes_t)avail < update_size)
{
if(state != SND_PCM_STATE_RUNNING)
{
err = snd_pcm_start(self->pcmHandle);
if(err < 0)
{
ERR("start failed: %s\n", snd_strerror(err));
continue;
}
}
if(snd_pcm_wait(self->pcmHandle, 1000) == 0)
ERR("Wait timeout... buffer size too low?\n");
continue;
}
ALCplaybackAlsa_lock(self);
WritePtr = self->buffer;
avail = snd_pcm_bytes_to_frames(self->pcmHandle, self->size);
aluMixData(device, WritePtr, avail);
while(avail > 0)
{
int ret = snd_pcm_writei(self->pcmHandle, WritePtr, avail);
switch (ret)
{
case -EAGAIN:
continue;
case -ESTRPIPE:
case -EPIPE:
case -EINTR:
ret = snd_pcm_recover(self->pcmHandle, ret, 1);
if(ret < 0)
avail = 0;
break;
default:
if (ret >= 0)
{
WritePtr += snd_pcm_frames_to_bytes(self->pcmHandle, ret);
avail -= ret;
}
break;
}
if (ret < 0)
{
ret = snd_pcm_prepare(self->pcmHandle);
if(ret < 0)
break;
}
}
ALCplaybackAlsa_unlock(self);
}
return 0;
}
static ALCenum ALCplaybackAlsa_open(ALCplaybackAlsa *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
const char *driver = NULL;
int err;
if(name)
{
size_t idx;
if(!allDevNameMap)
allDevNameMap = probe_devices(SND_PCM_STREAM_PLAYBACK, &numDevNames);
for(idx = 0;idx < numDevNames;idx++)
{
if(strcmp(name, allDevNameMap[idx].name) == 0)
{
driver = allDevNameMap[idx].device;
break;
}
}
if(idx == numDevNames)
return ALC_INVALID_VALUE;
}
else
{
name = alsaDevice;
driver = GetConfigValue("alsa", "device", "default");
}
err = snd_pcm_open(&self->pcmHandle, driver, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK);
if(err < 0)
{
ERR("Could not open playback device '%s': %s\n", driver, snd_strerror(err));
return ALC_OUT_OF_MEMORY;
}
/* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */
snd_config_update_free_global();
al_string_copy_cstr(&device->DeviceName, name);
return ALC_NO_ERROR;
}
static void ALCplaybackAlsa_close(ALCplaybackAlsa *self)
{
snd_pcm_close(self->pcmHandle);
}
static ALCboolean ALCplaybackAlsa_reset(ALCplaybackAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_uframes_t periodSizeInFrames;
unsigned int periodLen, bufferLen;
snd_pcm_sw_params_t *sp = NULL;
snd_pcm_hw_params_t *hp = NULL;
snd_pcm_access_t access;
snd_pcm_format_t format;
unsigned int periods;
unsigned int rate;
const char *funcerr;
int allowmmap;
int err;
format = -1;
switch(device->FmtType)
{
case DevFmtByte:
format = SND_PCM_FORMAT_S8;
break;
case DevFmtUByte:
format = SND_PCM_FORMAT_U8;
break;
case DevFmtShort:
format = SND_PCM_FORMAT_S16;
break;
case DevFmtUShort:
format = SND_PCM_FORMAT_U16;
break;
case DevFmtInt:
format = SND_PCM_FORMAT_S32;
break;
case DevFmtUInt:
format = SND_PCM_FORMAT_U32;
break;
case DevFmtFloat:
format = SND_PCM_FORMAT_FLOAT;
break;
}
allowmmap = GetConfigValueBool("alsa", "mmap", 1);
periods = device->NumUpdates;
periodLen = (ALuint64)device->UpdateSize * 1000000 / device->Frequency;
bufferLen = periodLen * periods;
rate = device->Frequency;
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_any(self->pcmHandle, hp));
/* set interleaved access */
if(!allowmmap || snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_MMAP_INTERLEAVED) < 0)
{
/* No mmap */
CHECK(snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED));
}
/* test and set format (implicitly sets sample bits) */
if(snd_pcm_hw_params_test_format(self->pcmHandle, hp, format) < 0)
{
static const struct {
snd_pcm_format_t format;
enum DevFmtType fmttype;
} formatlist[] = {
{ SND_PCM_FORMAT_FLOAT, DevFmtFloat },
{ SND_PCM_FORMAT_S32, DevFmtInt },
{ SND_PCM_FORMAT_U32, DevFmtUInt },
{ SND_PCM_FORMAT_S16, DevFmtShort },
{ SND_PCM_FORMAT_U16, DevFmtUShort },
{ SND_PCM_FORMAT_S8, DevFmtByte },
{ SND_PCM_FORMAT_U8, DevFmtUByte },
};
size_t k;
for(k = 0;k < COUNTOF(formatlist);k++)
{
format = formatlist[k].format;
if(snd_pcm_hw_params_test_format(self->pcmHandle, hp, format) >= 0)
{
device->FmtType = formatlist[k].fmttype;
break;
}
}
}
CHECK(snd_pcm_hw_params_set_format(self->pcmHandle, hp, format));
/* test and set channels (implicitly sets frame bits) */
if(snd_pcm_hw_params_test_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans)) < 0)
{
static const enum DevFmtChannels channellist[] = {
DevFmtStereo,
DevFmtQuad,
DevFmtX51,
DevFmtX71,
DevFmtMono,
};
size_t k;
for(k = 0;k < COUNTOF(channellist);k++)
{
if(snd_pcm_hw_params_test_channels(self->pcmHandle, hp, ChannelsFromDevFmt(channellist[k])) >= 0)
{
device->FmtChans = channellist[k];
break;
}
}
}
CHECK(snd_pcm_hw_params_set_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans)));
/* set rate (implicitly constrains period/buffer parameters) */
if(snd_pcm_hw_params_set_rate_resample(self->pcmHandle, hp, 0) < 0)
ERR("Failed to disable ALSA resampler\n");
CHECK(snd_pcm_hw_params_set_rate_near(self->pcmHandle, hp, &rate, NULL));
/* set buffer time (implicitly constrains period/buffer parameters) */
if((err=snd_pcm_hw_params_set_buffer_time_near(self->pcmHandle, hp, &bufferLen, NULL)) < 0)
ERR("snd_pcm_hw_params_set_buffer_time_near failed: %s\n", snd_strerror(err));
/* set period time (implicitly sets buffer size/bytes/time and period size/bytes) */
if((err=snd_pcm_hw_params_set_period_time_near(self->pcmHandle, hp, &periodLen, NULL)) < 0)
ERR("snd_pcm_hw_params_set_period_time_near failed: %s\n", snd_strerror(err));
/* install and prepare hardware configuration */
CHECK(snd_pcm_hw_params(self->pcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_access(hp, &access));
CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL));
CHECK(snd_pcm_hw_params_get_periods(hp, &periods, NULL));
snd_pcm_hw_params_free(hp);
hp = NULL;
snd_pcm_sw_params_malloc(&sp);
CHECK(snd_pcm_sw_params_current(self->pcmHandle, sp));
CHECK(snd_pcm_sw_params_set_avail_min(self->pcmHandle, sp, periodSizeInFrames));
CHECK(snd_pcm_sw_params_set_stop_threshold(self->pcmHandle, sp, periodSizeInFrames*periods));
CHECK(snd_pcm_sw_params(self->pcmHandle, sp));
#undef CHECK
snd_pcm_sw_params_free(sp);
sp = NULL;
device->NumUpdates = periods;
device->UpdateSize = periodSizeInFrames;
device->Frequency = rate;
SetDefaultChannelOrder(device);
return ALC_TRUE;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
if(sp) snd_pcm_sw_params_free(sp);
return ALC_FALSE;
}
static ALCboolean ALCplaybackAlsa_start(ALCplaybackAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
ALuint (*thread_func)(ALvoid*) = NULL;
snd_pcm_hw_params_t *hp = NULL;
snd_pcm_access_t access;
const char *funcerr;
int err;
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_current(self->pcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_access(hp, &access));
#undef CHECK
snd_pcm_hw_params_free(hp);
hp = NULL;
self->size = snd_pcm_frames_to_bytes(self->pcmHandle, device->UpdateSize);
if(access == SND_PCM_ACCESS_RW_INTERLEAVED)
{
self->buffer = malloc(self->size);
if(!self->buffer)
{
ERR("buffer malloc failed\n");
return ALC_FALSE;
}
thread_func = ALCplaybackAlsa_mixerNoMMapProc;
}
else
{
err = snd_pcm_prepare(self->pcmHandle);
if(err < 0)
{
ERR("snd_pcm_prepare(data->pcmHandle) failed: %s\n", snd_strerror(err));
return ALC_FALSE;
}
thread_func = ALCplaybackAlsa_mixerProc;
}
if(!StartThread(&self->thread, thread_func, self))
{
ERR("Could not create playback thread\n");
free(self->buffer);
self->buffer = NULL;
return ALC_FALSE;
}
return ALC_TRUE;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
return ALC_FALSE;
}
static void ALCplaybackAlsa_stop(ALCplaybackAlsa *self)
{
if(self->thread)
{
self->killNow = 1;
StopThread(self->thread);
self->thread = NULL;
}
self->killNow = 0;
free(self->buffer);
self->buffer = NULL;
}
static ALint64 ALCplaybackAlsa_getLatency(ALCplaybackAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_sframes_t delay = 0;
int err;
if((err=snd_pcm_delay(self->pcmHandle, &delay)) < 0)
{
ERR("Failed to get pcm delay: %s\n", snd_strerror(err));
return 0;
}
return maxi64((ALint64)delay*1000000000/device->Frequency, 0);
}
DEFINE_ALCBACKEND_VTABLE(ALCplaybackAlsa);
typedef struct ALCcaptureAlsa {
DERIVE_FROM_TYPE(ALCbackend);
snd_pcm_t *pcmHandle;
ALvoid *buffer;
ALsizei size;
ALboolean doCapture;
RingBuffer *ring;
snd_pcm_sframes_t last_avail;
} ALCcaptureAlsa;
DECLARE_ALCBACKEND_VTABLE(ALCcaptureAlsa);
static void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device);
static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, Destruct)
static ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name);
static void ALCcaptureAlsa_close(ALCcaptureAlsa *self);
static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, ALCboolean, reset)
static ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self);
static void ALCcaptureAlsa_stop(ALCcaptureAlsa *self);
static ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples);
static ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self);
static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCcaptureAlsa, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCcaptureAlsa)
static void ALCcaptureAlsa_Construct(ALCcaptureAlsa *self, ALCdevice *device)
{
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCcaptureAlsa, ALCbackend, self);
}
static ALCenum ALCcaptureAlsa_open(ALCcaptureAlsa *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
const char *driver = NULL;
snd_pcm_hw_params_t *hp;
snd_pcm_uframes_t bufferSizeInFrames;
snd_pcm_uframes_t periodSizeInFrames;
ALboolean needring = AL_FALSE;
snd_pcm_format_t format;
const char *funcerr;
int err;
if(name)
{
size_t idx;
if(!allCaptureDevNameMap)
allCaptureDevNameMap = probe_devices(SND_PCM_STREAM_CAPTURE, &numCaptureDevNames);
for(idx = 0;idx < numCaptureDevNames;idx++)
{
if(strcmp(name, allCaptureDevNameMap[idx].name) == 0)
{
driver = allCaptureDevNameMap[idx].device;
break;
}
}
if(idx == numCaptureDevNames)
return ALC_INVALID_VALUE;
}
else
{
name = alsaDevice;
driver = GetConfigValue("alsa", "capture", "default");
}
err = snd_pcm_open(&self->pcmHandle, driver, SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK);
if(err < 0)
{
ERR("Could not open capture device '%s': %s\n", driver, snd_strerror(err));
return ALC_INVALID_VALUE;
}
/* Free alsa's global config tree. Otherwise valgrind reports a ton of leaks. */
snd_config_update_free_global();
format = -1;
switch(device->FmtType)
{
case DevFmtByte:
format = SND_PCM_FORMAT_S8;
break;
case DevFmtUByte:
format = SND_PCM_FORMAT_U8;
break;
case DevFmtShort:
format = SND_PCM_FORMAT_S16;
break;
case DevFmtUShort:
format = SND_PCM_FORMAT_U16;
break;
case DevFmtInt:
format = SND_PCM_FORMAT_S32;
break;
case DevFmtUInt:
format = SND_PCM_FORMAT_U32;
break;
case DevFmtFloat:
format = SND_PCM_FORMAT_FLOAT;
break;
}
funcerr = NULL;
bufferSizeInFrames = maxu(device->UpdateSize*device->NumUpdates,
100*device->Frequency/1000);
periodSizeInFrames = minu(bufferSizeInFrames, 25*device->Frequency/1000);
snd_pcm_hw_params_malloc(&hp);
#define CHECK(x) if((funcerr=#x),(err=(x)) < 0) goto error
CHECK(snd_pcm_hw_params_any(self->pcmHandle, hp));
/* set interleaved access */
CHECK(snd_pcm_hw_params_set_access(self->pcmHandle, hp, SND_PCM_ACCESS_RW_INTERLEAVED));
/* set format (implicitly sets sample bits) */
CHECK(snd_pcm_hw_params_set_format(self->pcmHandle, hp, format));
/* set channels (implicitly sets frame bits) */
CHECK(snd_pcm_hw_params_set_channels(self->pcmHandle, hp, ChannelsFromDevFmt(device->FmtChans)));
/* set rate (implicitly constrains period/buffer parameters) */
CHECK(snd_pcm_hw_params_set_rate(self->pcmHandle, hp, device->Frequency, 0));
/* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */
if(snd_pcm_hw_params_set_buffer_size_min(self->pcmHandle, hp, &bufferSizeInFrames) < 0)
{
TRACE("Buffer too large, using intermediate ring buffer\n");
needring = AL_TRUE;
CHECK(snd_pcm_hw_params_set_buffer_size_near(self->pcmHandle, hp, &bufferSizeInFrames));
}
/* set buffer size in frame units (implicitly sets period size/bytes/time and buffer time/bytes) */
CHECK(snd_pcm_hw_params_set_period_size_near(self->pcmHandle, hp, &periodSizeInFrames, NULL));
/* install and prepare hardware configuration */
CHECK(snd_pcm_hw_params(self->pcmHandle, hp));
/* retrieve configuration info */
CHECK(snd_pcm_hw_params_get_period_size(hp, &periodSizeInFrames, NULL));
#undef CHECK
snd_pcm_hw_params_free(hp);
hp = NULL;
if(needring)
{
self->ring = CreateRingBuffer(FrameSizeFromDevFmt(device->FmtChans, device->FmtType),
device->UpdateSize*device->NumUpdates);
if(!self->ring)
{
ERR("ring buffer create failed\n");
goto error2;
}
self->size = snd_pcm_frames_to_bytes(self->pcmHandle, periodSizeInFrames);
self->buffer = malloc(self->size);
if(!self->buffer)
{
ERR("buffer malloc failed\n");
goto error2;
}
}
al_string_copy_cstr(&device->DeviceName, name);
return ALC_NO_ERROR;
error:
ERR("%s failed: %s\n", funcerr, snd_strerror(err));
if(hp) snd_pcm_hw_params_free(hp);
error2:
free(self->buffer);
self->buffer = NULL;
DestroyRingBuffer(self->ring);
self->ring = NULL;
snd_pcm_close(self->pcmHandle);
return ALC_INVALID_VALUE;
}
static void ALCcaptureAlsa_close(ALCcaptureAlsa *self)
{
snd_pcm_close(self->pcmHandle);
DestroyRingBuffer(self->ring);
free(self->buffer);
self->buffer = NULL;
}
static ALCboolean ALCcaptureAlsa_start(ALCcaptureAlsa *self)
{
int err = snd_pcm_start(self->pcmHandle);
if(err < 0)
{
ERR("start failed: %s\n", snd_strerror(err));
aluHandleDisconnect(STATIC_CAST(ALCbackend, self)->mDevice);
return ALC_FALSE;
}
self->doCapture = AL_TRUE;
return ALC_TRUE;
}
static void ALCcaptureAlsa_stop(ALCcaptureAlsa *self)
{
ALCuint avail;
int err;
/* OpenAL requires access to unread audio after stopping, but ALSA's
* snd_pcm_drain is unreliable and snd_pcm_drop drops it. Capture what's
* available now so it'll be available later after the drop. */
avail = ALCcaptureAlsa_availableSamples(self);
if(!self->ring && avail > 0)
{
/* The ring buffer implicitly captures when checking availability.
* Direct access needs to explicitly capture it into temp storage. */
ALsizei size;
void *ptr;
size = snd_pcm_frames_to_bytes(self->pcmHandle, avail);
ptr = realloc(self->buffer, size);
if(ptr)
{
self->buffer = ptr;
ALCcaptureAlsa_captureSamples(self, self->buffer, avail);
self->size = size;
}
}
err = snd_pcm_drop(self->pcmHandle);
if(err < 0)
ERR("drop failed: %s\n", snd_strerror(err));
self->doCapture = AL_FALSE;
}
static ALCenum ALCcaptureAlsa_captureSamples(ALCcaptureAlsa *self, ALCvoid *buffer, ALCuint samples)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
if(self->ring)
{
ReadRingBuffer(self->ring, buffer, samples);
return ALC_NO_ERROR;
}
self->last_avail -= samples;
while(device->Connected && samples > 0)
{
snd_pcm_sframes_t amt = 0;
if(self->size > 0)
{
/* First get any data stored from the last stop */
amt = snd_pcm_bytes_to_frames(self->pcmHandle, self->size);
if((snd_pcm_uframes_t)amt > samples) amt = samples;
amt = snd_pcm_frames_to_bytes(self->pcmHandle, amt);
memmove(buffer, self->buffer, amt);
if(self->size > amt)
{
memmove(self->buffer, self->buffer+amt, self->size - amt);
self->size -= amt;
}
else
{
free(self->buffer);
self->buffer = NULL;
self->size = 0;
}
amt = snd_pcm_bytes_to_frames(self->pcmHandle, amt);
}
else if(self->doCapture)
amt = snd_pcm_readi(self->pcmHandle, buffer, samples);
if(amt < 0)
{
ERR("read error: %s\n", snd_strerror(amt));
if(amt == -EAGAIN)
continue;
if((amt=snd_pcm_recover(self->pcmHandle, amt, 1)) >= 0)
{
amt = snd_pcm_start(self->pcmHandle);
if(amt >= 0)
amt = snd_pcm_avail_update(self->pcmHandle);
}
if(amt < 0)
{
ERR("restore error: %s\n", snd_strerror(amt));
aluHandleDisconnect(device);
break;
}
/* If the amount available is less than what's asked, we lost it
* during recovery. So just give silence instead. */
if((snd_pcm_uframes_t)amt < samples)
break;
continue;
}
buffer = (ALbyte*)buffer + amt;
samples -= amt;
}
if(samples > 0)
memset(buffer, ((device->FmtType == DevFmtUByte) ? 0x80 : 0),
snd_pcm_frames_to_bytes(self->pcmHandle, samples));
return ALC_NO_ERROR;
}
static ALCuint ALCcaptureAlsa_availableSamples(ALCcaptureAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_sframes_t avail = 0;
if(device->Connected && self->doCapture)
avail = snd_pcm_avail_update(self->pcmHandle);
if(avail < 0)
{
ERR("avail update failed: %s\n", snd_strerror(avail));
if((avail=snd_pcm_recover(self->pcmHandle, avail, 1)) >= 0)
{
if(self->doCapture)
avail = snd_pcm_start(self->pcmHandle);
if(avail >= 0)
avail = snd_pcm_avail_update(self->pcmHandle);
}
if(avail < 0)
{
ERR("restore error: %s\n", snd_strerror(avail));
aluHandleDisconnect(device);
}
}
if(!self->ring)
{
if(avail < 0) avail = 0;
avail += snd_pcm_bytes_to_frames(self->pcmHandle, self->size);
if(avail > self->last_avail) self->last_avail = avail;
return self->last_avail;
}
while(avail > 0)
{
snd_pcm_sframes_t amt;
amt = snd_pcm_bytes_to_frames(self->pcmHandle, self->size);
if(avail < amt) amt = avail;
amt = snd_pcm_readi(self->pcmHandle, self->buffer, amt);
if(amt < 0)
{
ERR("read error: %s\n", snd_strerror(amt));
if(amt == -EAGAIN)
continue;
if((amt=snd_pcm_recover(self->pcmHandle, amt, 1)) >= 0)
{
if(self->doCapture)
amt = snd_pcm_start(self->pcmHandle);
if(amt >= 0)
amt = snd_pcm_avail_update(self->pcmHandle);
}
if(amt < 0)
{
ERR("restore error: %s\n", snd_strerror(amt));
aluHandleDisconnect(device);
break;
}
avail = amt;
continue;
}
WriteRingBuffer(self->ring, self->buffer, amt);
avail -= amt;
}
return RingBufferSize(self->ring);
}
static ALint64 ALCcaptureAlsa_getLatency(ALCcaptureAlsa *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
snd_pcm_sframes_t delay = 0;
int err;
if((err=snd_pcm_delay(self->pcmHandle, &delay)) < 0)
{
ERR("Failed to get pcm delay: %s\n", snd_strerror(err));
return 0;
}
return maxi64((ALint64)delay*1000000000/device->Frequency, 0);
}
DEFINE_ALCBACKEND_VTABLE(ALCcaptureAlsa);
typedef struct ALCalsaBackendFactory {
DERIVE_FROM_TYPE(ALCbackendFactory);
} ALCalsaBackendFactory;
#define ALCALSABACKENDFACTORY_INITIALIZER { { GET_VTABLE2(ALCalsaBackendFactory, ALCbackendFactory) } }
static ALCboolean ALCalsaBackendFactory_init(ALCalsaBackendFactory* UNUSED(self))
{
if(!alsa_load())
return ALC_FALSE;
return ALC_TRUE;
}
static void ALCalsaBackendFactory_deinit(ALCalsaBackendFactory* UNUSED(self))
{
ALuint i;
for(i = 0;i < numDevNames;++i)
{
free(allDevNameMap[i].name);
free(allDevNameMap[i].device);
}
free(allDevNameMap);
allDevNameMap = NULL;
numDevNames = 0;
for(i = 0;i < numCaptureDevNames;++i)
{
free(allCaptureDevNameMap[i].name);
free(allCaptureDevNameMap[i].device);
}
free(allCaptureDevNameMap);
allCaptureDevNameMap = NULL;
numCaptureDevNames = 0;
#ifdef HAVE_DYNLOAD
if(alsa_handle)
CloseLib(alsa_handle);
alsa_handle = NULL;
#endif
}
static ALCboolean ALCalsaBackendFactory_querySupport(ALCalsaBackendFactory* UNUSED(self), ALCbackend_Type type)
{
if(type == ALCbackend_Playback || type == ALCbackend_Capture)
return ALC_TRUE;
return ALC_FALSE;
}
static void ALCalsaBackendFactory_probe(ALCalsaBackendFactory* UNUSED(self), enum DevProbe type)
{
ALuint i;
switch(type)
{
case ALL_DEVICE_PROBE:
for(i = 0;i < numDevNames;++i)
{
free(allDevNameMap[i].name);
free(allDevNameMap[i].device);
}
free(allDevNameMap);
allDevNameMap = probe_devices(SND_PCM_STREAM_PLAYBACK, &numDevNames);
for(i = 0;i < numDevNames;++i)
AppendAllDevicesList(allDevNameMap[i].name);
break;
case CAPTURE_DEVICE_PROBE:
for(i = 0;i < numCaptureDevNames;++i)
{
free(allCaptureDevNameMap[i].name);
free(allCaptureDevNameMap[i].device);
}
free(allCaptureDevNameMap);
allCaptureDevNameMap = probe_devices(SND_PCM_STREAM_CAPTURE, &numCaptureDevNames);
for(i = 0;i < numCaptureDevNames;++i)
AppendCaptureDeviceList(allCaptureDevNameMap[i].name);
break;
}
}
static ALCbackend* ALCalsaBackendFactory_createBackend(ALCalsaBackendFactory* UNUSED(self), ALCdevice *device, ALCbackend_Type type)
{
if(type == ALCbackend_Playback)
{
ALCplaybackAlsa *backend;
backend = ALCplaybackAlsa_New(sizeof(*backend));
if(!backend) return NULL;
memset(backend, 0, sizeof(*backend));
ALCplaybackAlsa_Construct(backend, device);
return STATIC_CAST(ALCbackend, backend);
}
if(type == ALCbackend_Capture)
{
ALCcaptureAlsa *backend;
backend = ALCcaptureAlsa_New(sizeof(*backend));
if(!backend) return NULL;
memset(backend, 0, sizeof(*backend));
ALCcaptureAlsa_Construct(backend, device);
return STATIC_CAST(ALCbackend, backend);
}
return NULL;
}
DEFINE_ALCBACKENDFACTORY_VTABLE(ALCalsaBackendFactory);
ALCbackendFactory *ALCalsaBackendFactory_getFactory(void)
{
static ALCalsaBackendFactory factory = ALCALSABACKENDFACTORY_INITIALIZER;
return STATIC_CAST(ALCbackendFactory, &factory);
}