78e7c1c27b
Code provided by Mike Gorchak
357 lines
12 KiB
C
357 lines
12 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2013 by Mike Gorchak
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alFilter.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alError.h"
|
|
#include "alu.h"
|
|
|
|
/* Filters implementation is based on the "Cookbook formulae for audio *
|
|
* EQ biquad filter coefficients" by Robert Bristow-Johnson *
|
|
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt */
|
|
|
|
typedef enum ALEQFilterType {
|
|
LOWPASS,
|
|
BANDPASS,
|
|
} ALEQFilterType;
|
|
|
|
typedef struct ALEQFilter {
|
|
ALEQFilterType type;
|
|
ALfloat x[2]; /* History of two last input samples */
|
|
ALfloat y[2]; /* History of two last output samples */
|
|
ALfloat a[3]; /* Transfer function coefficients "a" */
|
|
ALfloat b[3]; /* Transfer function coefficients "b" */
|
|
} ALEQFilter;
|
|
|
|
typedef struct ALdistortionState {
|
|
/* Must be first in all effects! */
|
|
ALeffectState state;
|
|
|
|
/* Effect gains for each channel */
|
|
ALfloat Gain[MaxChannels];
|
|
|
|
/* Effect parameters */
|
|
ALEQFilter bandpass;
|
|
ALEQFilter lowpass;
|
|
ALfloat frequency;
|
|
ALfloat attenuation;
|
|
ALfloat edge;
|
|
|
|
/* Oversample data */
|
|
ALfloat oversample_buffer[BUFFERSIZE][4];
|
|
} ALdistortionState;
|
|
|
|
static ALvoid DistortionDestroy(ALeffectState *effect)
|
|
{
|
|
ALdistortionState *state = (ALdistortionState*)effect;
|
|
|
|
free(state);
|
|
}
|
|
|
|
static ALboolean DistortionDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
|
|
{
|
|
ALdistortionState *state = (ALdistortionState*)effect;
|
|
|
|
state->frequency = (ALfloat)Device->Frequency;
|
|
|
|
return AL_TRUE;
|
|
}
|
|
|
|
static ALvoid DistortionUpdate(ALeffectState *effect, ALCdevice *Device, const ALeffectslot *Slot)
|
|
{
|
|
ALdistortionState *state = (ALdistortionState*)effect;
|
|
ALfloat gain = sqrtf(1.0f / Device->NumChan) * Slot->Gain;
|
|
ALuint it;
|
|
ALfloat w0;
|
|
ALfloat alpha;
|
|
ALfloat bandwidth;
|
|
ALfloat cutoff;
|
|
|
|
for(it = 0; it < Device->NumChan; it++)
|
|
{
|
|
enum Channel chan = Device->Speaker2Chan[it];
|
|
state->Gain[chan] = gain;
|
|
}
|
|
|
|
/* Store distorted signal attenuation settings */
|
|
state->attenuation = Slot->effect.Distortion.Gain;
|
|
|
|
/* Store waveshaper edge settings */
|
|
state->edge = Slot->effect.Distortion.Edge;
|
|
|
|
/* Lowpass filter */
|
|
cutoff = Slot->effect.Distortion.LowpassCutoff;
|
|
/* Bandwidth value is constant in octaves */
|
|
bandwidth = (cutoff / 2.0f) / (cutoff * 0.67f);
|
|
w0 = 2.0f * F_PI * cutoff / (state->frequency * 4.0f);
|
|
alpha = sinf(w0) * sinhf(logf(2.0f) / 2.0f * bandwidth * w0 / sinf(w0));
|
|
state->lowpass.b[0] = (1.0f - cosf(w0)) / 2.0f;
|
|
state->lowpass.b[1] = 1.0f - cosf(w0);
|
|
state->lowpass.b[2] = (1.0f - cosf(w0)) / 2.0f;
|
|
state->lowpass.a[0] = 1.0f + alpha;
|
|
state->lowpass.a[1] = -2.0f * cosf(w0);
|
|
state->lowpass.a[2] = 1.0f - alpha;
|
|
|
|
/* Bandpass filter */
|
|
cutoff = Slot->effect.Distortion.EQCenter;
|
|
/* Convert bandwidth in Hz to octaves */
|
|
bandwidth = Slot->effect.Distortion.EQBandwidth / (cutoff * 0.67f);
|
|
w0 = 2.0f * F_PI * cutoff / (state->frequency * 4.0f);
|
|
alpha = sinf(w0) * sinhf(logf(2.0f) / 2.0f * bandwidth * w0 / sinf(w0));
|
|
state->bandpass.b[0] = alpha;
|
|
state->bandpass.b[1] = 0;
|
|
state->bandpass.b[2] = -alpha;
|
|
state->bandpass.a[0] = 1.0f + alpha;
|
|
state->bandpass.a[1] = -2.0f * cosf(w0);
|
|
state->bandpass.a[2] = 1.0f - alpha;
|
|
}
|
|
|
|
static ALvoid DistortionProcess(ALeffectState *effect, ALuint SamplesToDo, const ALfloat *RESTRICT SamplesIn, ALfloat (*RESTRICT SamplesOut)[BUFFERSIZE])
|
|
{
|
|
ALdistortionState *state = (ALdistortionState*)effect;
|
|
float *RESTRICT oversample_buffer = &state->oversample_buffer[0][0];
|
|
ALfloat tempsmp;
|
|
ALuint it;
|
|
ALuint kt;
|
|
ALuint st;
|
|
|
|
/* Perform 4x oversampling to avoid aliasing. */
|
|
/* Oversampling greatly improves distortion */
|
|
/* quality and allows to implement lowpass and */
|
|
/* bandpass filters using high frequencies, at */
|
|
/* which classic IIR filters became unstable. */
|
|
|
|
/* Fill oversample buffer using zero stuffing */
|
|
for(it = 0; it < SamplesToDo; it++)
|
|
{
|
|
oversample_buffer[it*4 + 0] = SamplesIn[it];
|
|
oversample_buffer[it*4 + 1] = 0.0f;
|
|
oversample_buffer[it*4 + 2] = 0.0f;
|
|
oversample_buffer[it*4 + 3] = 0.0f;
|
|
}
|
|
|
|
/* First step, do lowpass filtering of original signal, */
|
|
/* additionally perform buffer interpolation and lowpass */
|
|
/* cutoff for oversampling (which is fortunately first */
|
|
/* step of distortion). So combine three operations into */
|
|
/* the one. */
|
|
for(it = 0; it < SamplesToDo * 4; it++)
|
|
{
|
|
tempsmp = state->lowpass.b[0] / state->lowpass.a[0] * oversample_buffer[it] +
|
|
state->lowpass.b[1] / state->lowpass.a[0] * state->lowpass.x[0] +
|
|
state->lowpass.b[2] / state->lowpass.a[0] * state->lowpass.x[1] -
|
|
state->lowpass.a[1] / state->lowpass.a[0] * state->lowpass.y[0] -
|
|
state->lowpass.a[2] / state->lowpass.a[0] * state->lowpass.y[1];
|
|
|
|
state->lowpass.x[1] = state->lowpass.x[0];
|
|
state->lowpass.x[0] = oversample_buffer[it];
|
|
state->lowpass.y[1] = state->lowpass.y[0];
|
|
state->lowpass.y[0] = tempsmp;
|
|
/* Restore signal power by multiplying sample by amount of oversampling */
|
|
oversample_buffer[it] = tempsmp * 4.0f;
|
|
}
|
|
|
|
for(it = 0; it < SamplesToDo * 4; it++)
|
|
{
|
|
ALfloat smp = oversample_buffer[it];
|
|
ALfloat edge = sinf(state->edge * (F_PI / 2.0f));
|
|
|
|
/* Second step, do distortion using waveshaper function */
|
|
/* to emulate signal processing during tube overdriving. */
|
|
/* Three steps of waveshaping are intended to modify */
|
|
/* waveform without boost/clipping/attenuation process. */
|
|
for(st = 0; st < 3; st++)
|
|
{
|
|
smp = (1.0f + 2.0f * edge / (1.0f - edge)) * smp / (1.0f + 2.0f * edge / (1.0f - edge) * fabsf(smp));
|
|
if((st & 0x00000001) == 0x00000001)
|
|
smp *= -1.0f;
|
|
}
|
|
|
|
/* Third step, do bandpass filtering of distorted signal */
|
|
tempsmp = state->bandpass.b[0] / state->bandpass.a[0] * smp +
|
|
state->bandpass.b[1] / state->bandpass.a[0] * state->bandpass.x[0] +
|
|
state->bandpass.b[2] / state->bandpass.a[0] * state->bandpass.x[1] -
|
|
state->bandpass.a[1] / state->bandpass.a[0] * state->bandpass.y[0] -
|
|
state->bandpass.a[2] / state->bandpass.a[0] * state->bandpass.y[1];
|
|
|
|
state->bandpass.x[1] = state->bandpass.x[0];
|
|
state->bandpass.x[0] = smp;
|
|
state->bandpass.y[1] = state->bandpass.y[0];
|
|
state->bandpass.y[0] = tempsmp;
|
|
smp = tempsmp;
|
|
|
|
/* Fourth step, final, do attenuation and perform decimation, */
|
|
/* store only one sample out of 4. */
|
|
if(!(it & 0x00000003))
|
|
{
|
|
smp *= state->attenuation;
|
|
for(kt = 0; kt < MaxChannels; kt++)
|
|
SamplesOut[kt][it>>2] += state->Gain[kt] * smp;
|
|
}
|
|
}
|
|
}
|
|
|
|
ALeffectState *DistortionCreate(void)
|
|
{
|
|
ALdistortionState *state;
|
|
|
|
state = malloc(sizeof(*state));
|
|
if(!state)
|
|
return NULL;
|
|
|
|
state->state.Destroy = DistortionDestroy;
|
|
state->state.DeviceUpdate = DistortionDeviceUpdate;
|
|
state->state.Update = DistortionUpdate;
|
|
state->state.Process = DistortionProcess;
|
|
|
|
state->bandpass.type = BANDPASS;
|
|
state->lowpass.type = LOWPASS;
|
|
|
|
/* Initialize sample history only on filter creation to avoid */
|
|
/* sound clicks if filter settings were changed in runtime. */
|
|
state->bandpass.x[0] = 0.0f;
|
|
state->bandpass.x[1] = 0.0f;
|
|
state->lowpass.y[0] = 0.0f;
|
|
state->lowpass.y[1] = 0.0f;
|
|
|
|
return &state->state;
|
|
}
|
|
|
|
void distortion_SetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
|
|
{
|
|
effect=effect;
|
|
val=val;
|
|
|
|
switch(param)
|
|
{
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM);
|
|
break;
|
|
}
|
|
}
|
|
void distortion_SetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
|
|
{
|
|
distortion_SetParami(effect, context, param, vals[0]);
|
|
}
|
|
void distortion_SetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_DISTORTION_EDGE:
|
|
if(val >= AL_DISTORTION_MIN_EDGE && val <= AL_DISTORTION_MAX_EDGE)
|
|
effect->Distortion.Edge = val;
|
|
else
|
|
alSetError(context, AL_INVALID_VALUE);
|
|
break;
|
|
|
|
case AL_DISTORTION_GAIN:
|
|
if(val >= AL_DISTORTION_MIN_GAIN && val <= AL_DISTORTION_MAX_GAIN)
|
|
effect->Distortion.Gain = val;
|
|
else
|
|
alSetError(context, AL_INVALID_VALUE);
|
|
break;
|
|
|
|
case AL_DISTORTION_LOWPASS_CUTOFF:
|
|
if(val >= AL_DISTORTION_MIN_LOWPASS_CUTOFF && val <= AL_DISTORTION_MAX_LOWPASS_CUTOFF)
|
|
effect->Distortion.LowpassCutoff = val;
|
|
else
|
|
alSetError(context, AL_INVALID_VALUE);
|
|
break;
|
|
|
|
case AL_DISTORTION_EQCENTER:
|
|
if(val >= AL_DISTORTION_MIN_EQCENTER && val <= AL_DISTORTION_MAX_EQCENTER)
|
|
effect->Distortion.EQCenter = val;
|
|
else
|
|
alSetError(context, AL_INVALID_VALUE);
|
|
break;
|
|
|
|
case AL_DISTORTION_EQBANDWIDTH:
|
|
if(val >= AL_DISTORTION_MIN_EQBANDWIDTH && val <= AL_DISTORTION_MAX_EQBANDWIDTH)
|
|
effect->Distortion.EQBandwidth = val;
|
|
else
|
|
alSetError(context, AL_INVALID_VALUE);
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM);
|
|
break;
|
|
}
|
|
}
|
|
void distortion_SetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
|
|
{
|
|
distortion_SetParamf(effect, context, param, vals[0]);
|
|
}
|
|
|
|
void distortion_GetParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
|
|
{
|
|
effect=effect;
|
|
val=val;
|
|
|
|
switch(param)
|
|
{
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM);
|
|
break;
|
|
}
|
|
}
|
|
void distortion_GetParamiv(ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
|
|
{
|
|
distortion_GetParami(effect, context, param, vals);
|
|
}
|
|
void distortion_GetParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_DISTORTION_EDGE:
|
|
*val = effect->Distortion.Edge;
|
|
break;
|
|
|
|
case AL_DISTORTION_GAIN:
|
|
*val = effect->Distortion.Gain;
|
|
break;
|
|
|
|
case AL_DISTORTION_LOWPASS_CUTOFF:
|
|
*val = effect->Distortion.LowpassCutoff;
|
|
break;
|
|
|
|
case AL_DISTORTION_EQCENTER:
|
|
*val = effect->Distortion.EQCenter;
|
|
break;
|
|
|
|
case AL_DISTORTION_EQBANDWIDTH:
|
|
*val = effect->Distortion.EQBandwidth;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM);
|
|
break;
|
|
}
|
|
}
|
|
void distortion_GetParamfv(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
|
|
{
|
|
distortion_GetParamf(effect, context, param, vals);
|
|
}
|