Chris Robinson 42531703cc Increase max output channels to 16
This also enables fully periphonic 3rd order HQ decoding.
2016-04-19 18:58:19 -07:00

799 lines
23 KiB
C

#ifndef AL_MAIN_H
#define AL_MAIN_H
#include <string.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <math.h>
#include <limits.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#if defined(_WIN64)
#define SZFMT "%I64u"
#elif defined(_WIN32)
#define SZFMT "%u"
#else
#define SZFMT "%zu"
#endif
#include "static_assert.h"
#include "align.h"
#include "atomic.h"
#include "uintmap.h"
#include "vector.h"
#include "alstring.h"
#include "almalloc.h"
#include "hrtf.h"
#ifndef ALC_SOFT_device_clock
#define ALC_SOFT_device_clock 1
typedef int64_t ALCint64SOFT;
typedef uint64_t ALCuint64SOFT;
#define ALC_DEVICE_CLOCK_SOFT 0x1600
typedef void (ALC_APIENTRY*LPALCGETINTEGER64VSOFT)(ALCdevice *device, ALCenum pname, ALsizei size, ALCint64SOFT *values);
#ifdef AL_ALEXT_PROTOTYPES
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALsizei size, ALCint64SOFT *values);
#endif
#endif
typedef ALint64SOFT ALint64;
typedef ALuint64SOFT ALuint64;
#ifndef U64
#if defined(_MSC_VER)
#define U64(x) ((ALuint64)(x##ui64))
#elif SIZEOF_LONG == 8
#define U64(x) ((ALuint64)(x##ul))
#elif SIZEOF_LONG_LONG == 8
#define U64(x) ((ALuint64)(x##ull))
#endif
#endif
#ifndef UINT64_MAX
#define UINT64_MAX U64(18446744073709551615)
#endif
#ifndef UNUSED
#if defined(__cplusplus)
#define UNUSED(x)
#elif defined(__GNUC__)
#define UNUSED(x) UNUSED_##x __attribute__((unused))
#elif defined(__LCLINT__)
#define UNUSED(x) /*@unused@*/ x
#else
#define UNUSED(x) x
#endif
#endif
#ifdef __GNUC__
#define DECL_CONST __attribute__((const))
#define DECL_FORMAT(x, y, z) __attribute__((format(x, (y), (z))))
#else
#define DECL_CONST
#define DECL_FORMAT(x, y, z)
#endif
#if defined(__GNUC__) && defined(__i386__)
/* force_align_arg_pointer is required for proper function arguments aligning
* when SSE code is used. Some systems (Windows, QNX) do not guarantee our
* thread functions will be properly aligned on the stack, even though GCC may
* generate code with the assumption that it is. */
#define FORCE_ALIGN __attribute__((force_align_arg_pointer))
#else
#define FORCE_ALIGN
#endif
#ifdef HAVE_C99_VLA
#define DECL_VLA(T, _name, _size) T _name[(_size)]
#else
#define DECL_VLA(T, _name, _size) T *_name = alloca((_size) * sizeof(T))
#endif
#ifndef PATH_MAX
#ifdef MAX_PATH
#define PATH_MAX MAX_PATH
#else
#define PATH_MAX 4096
#endif
#endif
static const union {
ALuint u;
ALubyte b[sizeof(ALuint)];
} EndianTest = { 1 };
#define IS_LITTLE_ENDIAN (EndianTest.b[0] == 1)
#define COUNTOF(x) (sizeof((x))/sizeof((x)[0]))
#define DERIVE_FROM_TYPE(t) t t##_parent
#define STATIC_CAST(to, obj) (&(obj)->to##_parent)
#ifdef __GNUC__
#define STATIC_UPCAST(to, from, obj) __extension__({ \
static_assert(__builtin_types_compatible_p(from, __typeof(*(obj))), \
"Invalid upcast object from type"); \
(to*)((char*)(obj) - offsetof(to, from##_parent)); \
})
#else
#define STATIC_UPCAST(to, from, obj) ((to*)((char*)(obj) - offsetof(to, from##_parent)))
#endif
#define DECLARE_FORWARD(T1, T2, rettype, func) \
rettype T1##_##func(T1 *obj) \
{ return T2##_##func(STATIC_CAST(T2, obj)); }
#define DECLARE_FORWARD1(T1, T2, rettype, func, argtype1) \
rettype T1##_##func(T1 *obj, argtype1 a) \
{ return T2##_##func(STATIC_CAST(T2, obj), a); }
#define DECLARE_FORWARD2(T1, T2, rettype, func, argtype1, argtype2) \
rettype T1##_##func(T1 *obj, argtype1 a, argtype2 b) \
{ return T2##_##func(STATIC_CAST(T2, obj), a, b); }
#define DECLARE_FORWARD3(T1, T2, rettype, func, argtype1, argtype2, argtype3) \
rettype T1##_##func(T1 *obj, argtype1 a, argtype2 b, argtype3 c) \
{ return T2##_##func(STATIC_CAST(T2, obj), a, b, c); }
#define GET_VTABLE1(T1) (&(T1##_vtable))
#define GET_VTABLE2(T1, T2) (&(T1##_##T2##_vtable))
#define SET_VTABLE1(T1, obj) ((obj)->vtbl = GET_VTABLE1(T1))
#define SET_VTABLE2(T1, T2, obj) (STATIC_CAST(T2, obj)->vtbl = GET_VTABLE2(T1, T2))
#define DECLARE_THUNK(T1, T2, rettype, func) \
static rettype T1##_##T2##_##func(T2 *obj) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj)); }
#define DECLARE_THUNK1(T1, T2, rettype, func, argtype1) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a); }
#define DECLARE_THUNK2(T1, T2, rettype, func, argtype1, argtype2) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b); }
#define DECLARE_THUNK3(T1, T2, rettype, func, argtype1, argtype2, argtype3) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b, argtype3 c) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b, c); }
#define DECLARE_THUNK4(T1, T2, rettype, func, argtype1, argtype2, argtype3, argtype4) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b, argtype3 c, argtype4 d) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b, c, d); }
#define DECLARE_DEFAULT_ALLOCATORS(T) \
static void* T##_New(size_t size) { return al_malloc(16, size); } \
static void T##_Delete(void *ptr) { al_free(ptr); }
/* Helper to extract an argument list for VCALL. Not used directly. */
#define EXTRACT_VCALL_ARGS(...) __VA_ARGS__))
/* Call a "virtual" method on an object, with arguments. */
#define V(obj, func) ((obj)->vtbl->func((obj), EXTRACT_VCALL_ARGS
/* Call a "virtual" method on an object, with no arguments. */
#define V0(obj, func) ((obj)->vtbl->func((obj) EXTRACT_VCALL_ARGS
#define DELETE_OBJ(obj) do { \
if((obj) != NULL) \
{ \
V0((obj),Destruct)(); \
V0((obj),Delete)(); \
} \
} while(0)
#define EXTRACT_NEW_ARGS(...) __VA_ARGS__); \
} \
} while(0)
#define NEW_OBJ(_res, T) do { \
_res = T##_New(sizeof(T)); \
if(_res) \
{ \
memset(_res, 0, sizeof(T)); \
T##_Construct(_res, EXTRACT_NEW_ARGS
#ifdef __cplusplus
extern "C" {
#endif
struct Hrtf;
#define DEFAULT_OUTPUT_RATE (44100)
#define MIN_OUTPUT_RATE (8000)
/* Find the next power-of-2 for non-power-of-2 numbers. */
inline ALuint NextPowerOf2(ALuint value)
{
if(value > 0)
{
value--;
value |= value>>1;
value |= value>>2;
value |= value>>4;
value |= value>>8;
value |= value>>16;
}
return value+1;
}
/* Fast float-to-int conversion. Assumes the FPU is already in round-to-zero
* mode. */
inline ALint fastf2i(ALfloat f)
{
#ifdef HAVE_LRINTF
return lrintf(f);
#elif defined(_MSC_VER) && defined(_M_IX86)
ALint i;
__asm fld f
__asm fistp i
return i;
#else
return (ALint)f;
#endif
}
/* Fast float-to-uint conversion. Assumes the FPU is already in round-to-zero
* mode. */
inline ALuint fastf2u(ALfloat f)
{ return fastf2i(f); }
enum DevProbe {
ALL_DEVICE_PROBE,
CAPTURE_DEVICE_PROBE
};
typedef struct {
ALCenum (*OpenPlayback)(ALCdevice*, const ALCchar*);
void (*ClosePlayback)(ALCdevice*);
ALCboolean (*ResetPlayback)(ALCdevice*);
ALCboolean (*StartPlayback)(ALCdevice*);
void (*StopPlayback)(ALCdevice*);
ALCenum (*OpenCapture)(ALCdevice*, const ALCchar*);
void (*CloseCapture)(ALCdevice*);
void (*StartCapture)(ALCdevice*);
void (*StopCapture)(ALCdevice*);
ALCenum (*CaptureSamples)(ALCdevice*, void*, ALCuint);
ALCuint (*AvailableSamples)(ALCdevice*);
} BackendFuncs;
ALCboolean alc_sndio_init(BackendFuncs *func_list);
void alc_sndio_deinit(void);
void alc_sndio_probe(enum DevProbe type);
ALCboolean alc_ca_init(BackendFuncs *func_list);
void alc_ca_deinit(void);
void alc_ca_probe(enum DevProbe type);
ALCboolean alc_opensl_init(BackendFuncs *func_list);
void alc_opensl_deinit(void);
void alc_opensl_probe(enum DevProbe type);
ALCboolean alc_qsa_init(BackendFuncs *func_list);
void alc_qsa_deinit(void);
void alc_qsa_probe(enum DevProbe type);
struct ALCbackend;
enum DistanceModel {
InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
InverseDistance = AL_INVERSE_DISTANCE,
LinearDistance = AL_LINEAR_DISTANCE,
ExponentDistance = AL_EXPONENT_DISTANCE,
DisableDistance = AL_NONE,
DefaultDistanceModel = InverseDistanceClamped
};
enum Channel {
FrontLeft = 0,
FrontRight,
FrontCenter,
LFE,
BackLeft,
BackRight,
BackCenter,
SideLeft,
SideRight,
UpperFrontLeft,
UpperFrontRight,
UpperBackLeft,
UpperBackRight,
LowerFrontLeft,
LowerFrontRight,
LowerBackLeft,
LowerBackRight,
Aux0,
Aux1,
Aux2,
Aux3,
Aux4,
Aux5,
Aux6,
Aux7,
Aux8,
Aux9,
Aux10,
Aux11,
Aux12,
Aux13,
Aux14,
Aux15,
InvalidChannel
};
/* Device formats */
enum DevFmtType {
DevFmtByte = ALC_BYTE_SOFT,
DevFmtUByte = ALC_UNSIGNED_BYTE_SOFT,
DevFmtShort = ALC_SHORT_SOFT,
DevFmtUShort = ALC_UNSIGNED_SHORT_SOFT,
DevFmtInt = ALC_INT_SOFT,
DevFmtUInt = ALC_UNSIGNED_INT_SOFT,
DevFmtFloat = ALC_FLOAT_SOFT,
DevFmtTypeDefault = DevFmtFloat
};
enum DevFmtChannels {
DevFmtMono = ALC_MONO_SOFT,
DevFmtStereo = ALC_STEREO_SOFT,
DevFmtQuad = ALC_QUAD_SOFT,
DevFmtX51 = ALC_5POINT1_SOFT,
DevFmtX61 = ALC_6POINT1_SOFT,
DevFmtX71 = ALC_7POINT1_SOFT,
/* Similar to 5.1, except using rear channels instead of sides */
DevFmtX51Rear = 0x80000000,
DevFmtBFormat3D,
DevFmtChannelsDefault = DevFmtStereo
};
#define MAX_OUTPUT_CHANNELS (16)
ALuint BytesFromDevFmt(enum DevFmtType type) DECL_CONST;
ALuint ChannelsFromDevFmt(enum DevFmtChannels chans) DECL_CONST;
inline ALuint FrameSizeFromDevFmt(enum DevFmtChannels chans, enum DevFmtType type)
{
return ChannelsFromDevFmt(chans) * BytesFromDevFmt(type);
}
extern const struct EffectList {
const char *name;
int type;
const char *ename;
ALenum val;
} EffectList[];
enum DeviceType {
Playback,
Capture,
Loopback
};
enum RenderMode {
NormalRender,
StereoPair,
HrtfRender
};
/* The maximum number of Ambisonics coefficients. For a given order (o), the
* size needed will be (o+1)**2, thus zero-order has 1, first-order has 4,
* second-order has 9, and third-order has 16. */
#define MAX_AMBI_ORDER 3
#define MAX_AMBI_COEFFS ((MAX_AMBI_ORDER+1) * (MAX_AMBI_ORDER+1))
typedef ALfloat ChannelConfig[MAX_AMBI_COEFFS];
typedef struct BFChannelConfig {
ALfloat Scale;
ALuint Index;
} BFChannelConfig;
#define HRTF_HISTORY_BITS (6)
#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS)
#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1)
typedef struct HrtfState {
alignas(16) ALfloat History[HRTF_HISTORY_LENGTH];
alignas(16) ALfloat Values[HRIR_LENGTH][2];
} HrtfState;
typedef struct HrtfParams {
alignas(16) ALfloat Coeffs[HRIR_LENGTH][2];
ALuint Delay[2];
} HrtfParams;
/* Size for temporary storage of buffer data, in ALfloats. Larger values need
* more memory, while smaller values may need more iterations. The value needs
* to be a sensible size, however, as it constrains the max stepping value used
* for mixing, as well as the maximum number of samples per mixing iteration.
*/
#define BUFFERSIZE (2048u)
struct ALCdevice_struct
{
RefCount ref;
ALCboolean Connected;
enum DeviceType Type;
ALuint Frequency;
ALuint UpdateSize;
ALuint NumUpdates;
enum DevFmtChannels FmtChans;
enum DevFmtType FmtType;
ALboolean IsHeadphones;
al_string DeviceName;
ATOMIC(ALCenum) LastError;
// Maximum number of sources that can be created
ALuint MaxNoOfSources;
// Maximum number of slots that can be created
ALuint AuxiliaryEffectSlotMax;
ALCuint NumMonoSources;
ALCuint NumStereoSources;
ALuint NumAuxSends;
// Map of Buffers for this device
UIntMap BufferMap;
// Map of Effects for this device
UIntMap EffectMap;
// Map of Filters for this device
UIntMap FilterMap;
/* HRTF filter tables */
vector_HrtfEntry Hrtf_List;
al_string Hrtf_Name;
const struct Hrtf *Hrtf;
ALCenum Hrtf_Status;
/* HRTF filter state for dry buffer content */
HrtfState Hrtf_State[MAX_OUTPUT_CHANNELS];
HrtfParams Hrtf_Params[MAX_OUTPUT_CHANNELS];
ALuint Hrtf_Offset;
/* UHJ encoder state */
struct Uhj2Encoder *Uhj_Encoder;
/* High quality Ambisonic decoder */
struct BFormatDec *AmbiDecoder;
// Stereo-to-binaural filter
struct bs2b *Bs2b;
/* Rendering mode. */
enum RenderMode Render_Mode;
// Device flags
ALuint Flags;
ALuint64 ClockBase;
ALuint SamplesDone;
/* Temp storage used for each source when mixing. */
alignas(16) ALfloat SourceData[BUFFERSIZE];
alignas(16) ALfloat ResampledData[BUFFERSIZE];
alignas(16) ALfloat FilteredData[BUFFERSIZE];
/* The "dry" path corresponds to the main output. */
struct {
union {
/* Ambisonic coefficients for mixing to the dry buffer. */
ChannelConfig Coeffs[MAX_OUTPUT_CHANNELS];
/* Coefficient channel mapping for mixing to the dry buffer. */
BFChannelConfig Map[MAX_OUTPUT_CHANNELS];
} Ambi;
/* Number of coefficients in each ChannelConfig to mix together (4 for
* first-order, 9 for second-order, etc).
*/
ALuint CoeffCount;
/* Dry buffer will be aliased by the virtual or real output. */
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} Dry;
/* First-order ambisonics output, to be upsampled to the dry buffer if different. */
struct {
union {
ChannelConfig Coeffs[MAX_OUTPUT_CHANNELS];
BFChannelConfig Map[MAX_OUTPUT_CHANNELS];
} Ambi;
/* Will only be 4 or 0. */
ALuint CoeffCount;
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} FOAOut;
/* Virtual output, to be post-processed to the real output. */
struct {
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} VirtOut;
/* "Real" output, which will be written to the device buffer. */
struct {
enum Channel ChannelName[MAX_OUTPUT_CHANNELS];
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} RealOut;
/* Running count of the mixer invocations, in 31.1 fixed point. This
* actually increments *twice* when mixing, first at the start and then at
* the end, so the bottom bit indicates if the device is currently mixing
* and the upper bits indicates how many mixes have been done.
*/
RefCount MixCount;
/* Default effect slot */
struct ALeffectslot *DefaultSlot;
// Contexts created on this device
ATOMIC(ALCcontext*) ContextList;
struct ALCbackend *Backend;
void *ExtraData; // For the backend's use
ALCdevice *volatile next;
/* Memory space used by the default slot (Playback devices only) */
alignas(16) ALCbyte _slot_mem[];
};
// Frequency was requested by the app or config file
#define DEVICE_FREQUENCY_REQUEST (1<<1)
// Channel configuration was requested by the config file
#define DEVICE_CHANNELS_REQUEST (1<<2)
// Sample type was requested by the config file
#define DEVICE_SAMPLE_TYPE_REQUEST (1<<3)
// Specifies if the DSP is paused at user request
#define DEVICE_PAUSED (1<<30)
// Specifies if the device is currently running
#define DEVICE_RUNNING (1<<31)
/* Nanosecond resolution for the device clock time. */
#define DEVICE_CLOCK_RES U64(1000000000)
/* Must be less than 15 characters (16 including terminating null) for
* compatibility with pthread_setname_np limitations. */
#define MIXER_THREAD_NAME "alsoft-mixer"
#define RECORD_THREAD_NAME "alsoft-record"
struct ALCcontext_struct
{
RefCount ref;
struct ALlistener *Listener;
UIntMap SourceMap;
UIntMap EffectSlotMap;
ATOMIC(ALenum) LastError;
ATOMIC(ALenum) UpdateSources;
volatile enum DistanceModel DistanceModel;
volatile ALboolean SourceDistanceModel;
volatile ALfloat DopplerFactor;
volatile ALfloat DopplerVelocity;
volatile ALfloat SpeedOfSound;
volatile ALenum DeferUpdates;
struct ALvoice *Voices;
ALsizei VoiceCount;
ALsizei MaxVoices;
VECTOR(struct ALeffectslot*) ActiveAuxSlots;
ALCdevice *Device;
const ALCchar *ExtensionList;
ALCcontext *volatile next;
/* Memory space used by the listener */
alignas(16) ALCbyte _listener_mem[];
};
ALCcontext *GetContextRef(void);
void ALCcontext_IncRef(ALCcontext *context);
void ALCcontext_DecRef(ALCcontext *context);
void AppendAllDevicesList(const ALCchar *name);
void AppendCaptureDeviceList(const ALCchar *name);
void ALCdevice_Lock(ALCdevice *device);
void ALCdevice_Unlock(ALCdevice *device);
void ALCcontext_DeferUpdates(ALCcontext *context);
void ALCcontext_ProcessUpdates(ALCcontext *context);
inline void LockContext(ALCcontext *context)
{ ALCdevice_Lock(context->Device); }
inline void UnlockContext(ALCcontext *context)
{ ALCdevice_Unlock(context->Device); }
typedef struct {
#ifdef HAVE_FENV_H
DERIVE_FROM_TYPE(fenv_t);
#else
int state;
#endif
#ifdef HAVE_SSE
int sse_state;
#endif
} FPUCtl;
void SetMixerFPUMode(FPUCtl *ctl);
void RestoreFPUMode(const FPUCtl *ctl);
typedef struct ll_ringbuffer ll_ringbuffer_t;
typedef struct ll_ringbuffer_data {
char *buf;
size_t len;
} ll_ringbuffer_data_t;
ll_ringbuffer_t *ll_ringbuffer_create(size_t sz, size_t elem_sz);
void ll_ringbuffer_free(ll_ringbuffer_t *rb);
void ll_ringbuffer_get_read_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec);
void ll_ringbuffer_get_write_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec);
size_t ll_ringbuffer_read(ll_ringbuffer_t *rb, char *dest, size_t cnt);
size_t ll_ringbuffer_peek(ll_ringbuffer_t *rb, char *dest, size_t cnt);
void ll_ringbuffer_read_advance(ll_ringbuffer_t *rb, size_t cnt);
size_t ll_ringbuffer_read_space(const ll_ringbuffer_t *rb);
int ll_ringbuffer_mlock(ll_ringbuffer_t *rb);
void ll_ringbuffer_reset(ll_ringbuffer_t *rb);
size_t ll_ringbuffer_write(ll_ringbuffer_t *rb, const char *src, size_t cnt);
void ll_ringbuffer_write_advance(ll_ringbuffer_t *rb, size_t cnt);
size_t ll_ringbuffer_write_space(const ll_ringbuffer_t *rb);
void ReadALConfig(void);
void FreeALConfig(void);
int ConfigValueExists(const char *devName, const char *blockName, const char *keyName);
const char *GetConfigValue(const char *devName, const char *blockName, const char *keyName, const char *def);
int GetConfigValueBool(const char *devName, const char *blockName, const char *keyName, int def);
int ConfigValueStr(const char *devName, const char *blockName, const char *keyName, const char **ret);
int ConfigValueInt(const char *devName, const char *blockName, const char *keyName, int *ret);
int ConfigValueUInt(const char *devName, const char *blockName, const char *keyName, unsigned int *ret);
int ConfigValueFloat(const char *devName, const char *blockName, const char *keyName, float *ret);
int ConfigValueBool(const char *devName, const char *blockName, const char *keyName, int *ret);
void SetRTPriority(void);
void SetDefaultChannelOrder(ALCdevice *device);
void SetDefaultWFXChannelOrder(ALCdevice *device);
const ALCchar *DevFmtTypeString(enum DevFmtType type) DECL_CONST;
const ALCchar *DevFmtChannelsString(enum DevFmtChannels chans) DECL_CONST;
/**
* GetChannelIdxByName
*
* Returns the index for the given channel name (e.g. FrontCenter), or -1 if it
* doesn't exist.
*/
inline ALint GetChannelIndex(const enum Channel names[MAX_OUTPUT_CHANNELS], enum Channel chan)
{
ALint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
{
if(names[i] == chan)
return i;
}
return -1;
}
#define GetChannelIdxByName(x, c) GetChannelIndex((x).ChannelName, (c))
extern FILE *LogFile;
#if defined(__GNUC__) && !defined(_WIN32) && !defined(IN_IDE_PARSER)
#define AL_PRINT(T, MSG, ...) fprintf(LogFile, "AL lib: %s %s: "MSG, T, __FUNCTION__ , ## __VA_ARGS__)
#else
void al_print(const char *type, const char *func, const char *fmt, ...) DECL_FORMAT(printf, 3,4);
#define AL_PRINT(T, ...) al_print((T), __FUNCTION__, __VA_ARGS__)
#endif
enum LogLevel {
NoLog,
LogError,
LogWarning,
LogTrace,
LogRef
};
extern enum LogLevel LogLevel;
#define TRACEREF(...) do { \
if(LogLevel >= LogRef) \
AL_PRINT("(--)", __VA_ARGS__); \
} while(0)
#define TRACE(...) do { \
if(LogLevel >= LogTrace) \
AL_PRINT("(II)", __VA_ARGS__); \
} while(0)
#define WARN(...) do { \
if(LogLevel >= LogWarning) \
AL_PRINT("(WW)", __VA_ARGS__); \
} while(0)
#define ERR(...) do { \
if(LogLevel >= LogError) \
AL_PRINT("(EE)", __VA_ARGS__); \
} while(0)
extern ALint RTPrioLevel;
extern ALuint CPUCapFlags;
enum {
CPU_CAP_SSE = 1<<0,
CPU_CAP_SSE2 = 1<<1,
CPU_CAP_SSE3 = 1<<2,
CPU_CAP_SSE4_1 = 1<<3,
CPU_CAP_NEON = 1<<4,
};
void FillCPUCaps(ALuint capfilter);
vector_al_string SearchDataFiles(const char *match, const char *subdir);
/* Small hack to use a pointer-to-array type as a normal argument type.
* Shouldn't be used directly. */
typedef ALfloat ALfloatBUFFERSIZE[BUFFERSIZE];
#ifdef __cplusplus
}
#endif
#endif