cc91490b61
Similar to the history buffer, to avoid using the state buffer as a ring buffer.
264 lines
9.2 KiB
C++
264 lines
9.2 KiB
C++
#include "config.h"
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#include <limits>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alu.h"
|
|
|
|
#include "alSource.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
|
|
template<>
|
|
const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{
|
|
const ALfloat *const filter{state->bsinc.filter};
|
|
const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
|
|
const ALsizei m{state->bsinc.m};
|
|
|
|
ASSUME(m > 0);
|
|
ASSUME(dstlen > 0);
|
|
ASSUME(increment > 0);
|
|
ASSUME(frac >= 0);
|
|
|
|
src -= state->bsinc.l;
|
|
for(ALsizei i{0};i < dstlen;i++)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
ALsizei offset{m*pi*4};
|
|
const __m128 *fil{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
|
|
const __m128 *scd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
|
|
const __m128 *phd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
|
|
const __m128 *spd{reinterpret_cast<const __m128*>(filter + offset)};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
__m128 r4{_mm_setzero_ps()};
|
|
{
|
|
const ALsizei count{m >> 2};
|
|
const __m128 pf4{_mm_set1_ps(pf)};
|
|
|
|
ASSUME(count > 0);
|
|
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
for(ALsizei j{0};j < count;j++)
|
|
{
|
|
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
|
|
const __m128 f4 = MLA4(
|
|
MLA4(fil[j], sf4, scd[j]),
|
|
pf4, MLA4(phd[j], sf4, spd[j])
|
|
);
|
|
/* r += f*src */
|
|
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4]));
|
|
}
|
|
#undef MLA4
|
|
}
|
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
|
dst[i] = _mm_cvtss_f32(r4);
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
static inline void ApplyCoeffs(ALsizei Offset, float2 *RESTRICT Values, const ALsizei IrSize,
|
|
const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
|
|
{
|
|
const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
|
|
|
|
ASSUME(IrSize >= 2);
|
|
|
|
if((Offset&1))
|
|
{
|
|
__m128 imp0, imp1;
|
|
__m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
|
|
__m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
|
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
|
|
ALsizei i{1};
|
|
for(;i < IrSize-1;i += 2)
|
|
{
|
|
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
|
|
vals = _mm_load_ps(&Values[i][0]);
|
|
imp1 = _mm_mul_ps(lrlr, coeffs);
|
|
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_store_ps(&Values[i][0], vals);
|
|
imp0 = imp1;
|
|
}
|
|
vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
|
|
imp0 = _mm_movehl_ps(imp0, imp0);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
|
|
}
|
|
else
|
|
{
|
|
for(ALsizei i{0};i < IrSize;i += 2)
|
|
{
|
|
__m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
|
|
__m128 vals{_mm_load_ps(&Values[i][0])};
|
|
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
|
|
_mm_store_ps(&Values[i][0], vals);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void MixHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
|
|
float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
|
|
MixHrtfParams *hrtfparams, const ALsizei BufferSize)
|
|
{
|
|
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
|
|
BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixHrtfBlend_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
|
|
const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
|
|
newparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
|
|
const ALsizei NumChans, const ALsizei BufferSize)
|
|
{
|
|
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
|
|
BufferSize);
|
|
}
|
|
|
|
|
|
template<>
|
|
void Mix_<SSETag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
|
|
ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
|
|
const ALsizei BufferSize)
|
|
{
|
|
ASSUME(OutChans > 0);
|
|
ASSUME(BufferSize > 0);
|
|
|
|
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
|
|
for(ALsizei c{0};c < OutChans;c++)
|
|
{
|
|
ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])};
|
|
ALsizei pos{0};
|
|
ALfloat gain{CurrentGains[c]};
|
|
const ALfloat diff{TargetGains[c] - gain};
|
|
|
|
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
|
|
{
|
|
ALsizei minsize{mini(BufferSize, Counter)};
|
|
const ALfloat step{diff * delta};
|
|
ALfloat step_count{0.0f};
|
|
/* Mix with applying gain steps in aligned multiples of 4. */
|
|
if(LIKELY(minsize > 3))
|
|
{
|
|
const __m128 four4{_mm_set1_ps(4.0f)};
|
|
const __m128 step4{_mm_set1_ps(step)};
|
|
const __m128 gain4{_mm_set1_ps(gain)};
|
|
__m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
|
|
ALsizei todo{minsize >> 2};
|
|
do {
|
|
const __m128 val4{_mm_load_ps(&data[pos])};
|
|
__m128 dry4{_mm_load_ps(&dst[pos])};
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
/* dry += val * (gain + step*step_count) */
|
|
dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
|
|
#undef MLA4
|
|
_mm_store_ps(&dst[pos], dry4);
|
|
step_count4 = _mm_add_ps(step_count4, four4);
|
|
pos += 4;
|
|
} while(--todo);
|
|
/* NOTE: step_count4 now represents the next four counts after
|
|
* the last four mixed samples, so the lowest element
|
|
* represents the next step count to apply.
|
|
*/
|
|
step_count = _mm_cvtss_f32(step_count4);
|
|
}
|
|
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
|
|
for(;pos < minsize;pos++)
|
|
{
|
|
dst[pos] += data[pos]*(gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(pos == Counter)
|
|
gain = TargetGains[c];
|
|
else
|
|
gain += step*step_count;
|
|
CurrentGains[c] = gain;
|
|
|
|
/* Mix until pos is aligned with 4 or the mix is done. */
|
|
minsize = mini(BufferSize, (pos+3)&~3);
|
|
for(;pos < minsize;pos++)
|
|
dst[pos] += data[pos]*gain;
|
|
}
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
if(LIKELY(BufferSize-pos > 3))
|
|
{
|
|
ALsizei todo{(BufferSize-pos) >> 2};
|
|
const __m128 gain4{_mm_set1_ps(gain)};
|
|
do {
|
|
const __m128 val4{_mm_load_ps(&data[pos])};
|
|
__m128 dry4{_mm_load_ps(&dst[pos])};
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(&dst[pos], dry4);
|
|
pos += 4;
|
|
} while(--todo);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
dst[pos] += data[pos]*gain;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void MixRow_<SSETag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
|
|
const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
|
|
{
|
|
ASSUME(InChans > 0);
|
|
ASSUME(BufferSize > 0);
|
|
|
|
for(ALsizei c{0};c < InChans;c++)
|
|
{
|
|
const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])};
|
|
const ALfloat gain{Gains[c]};
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
ALsizei pos{0};
|
|
if(LIKELY(BufferSize > 3))
|
|
{
|
|
ALsizei todo{BufferSize >> 2};
|
|
const __m128 gain4 = _mm_set1_ps(gain);
|
|
do {
|
|
const __m128 val4{_mm_load_ps(&src[pos])};
|
|
__m128 dry4{_mm_load_ps(&OutBuffer[pos])};
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(&OutBuffer[pos], dry4);
|
|
pos += 4;
|
|
} while(--todo);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[pos] += src[pos]*gain;
|
|
}
|
|
}
|