493 lines
17 KiB
C++
493 lines
17 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "bformatdec.h"
|
|
#include "ambdec.h"
|
|
#include "filters/splitter.h"
|
|
#include "alu.h"
|
|
|
|
#include "bool.h"
|
|
#include "threads.h"
|
|
#include "almalloc.h"
|
|
|
|
|
|
/* NOTE: These are scale factors as applied to Ambisonics content. Decoder
|
|
* coefficients should be divided by these values to get proper N3D scalings.
|
|
*/
|
|
const ALfloat N3D2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
|
|
};
|
|
const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.000000000f, /* ACN 0 (W), sqrt(1) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
2.236067978f, /* ACN 4 (V), sqrt(5) */
|
|
2.236067978f, /* ACN 5 (T), sqrt(5) */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
2.236067978f, /* ACN 7 (S), sqrt(5) */
|
|
2.236067978f, /* ACN 8 (U), sqrt(5) */
|
|
2.645751311f, /* ACN 9 (Q), sqrt(7) */
|
|
2.645751311f, /* ACN 10 (O), sqrt(7) */
|
|
2.645751311f, /* ACN 11 (M), sqrt(7) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.645751311f, /* ACN 13 (L), sqrt(7) */
|
|
2.645751311f, /* ACN 14 (N), sqrt(7) */
|
|
2.645751311f, /* ACN 15 (P), sqrt(7) */
|
|
};
|
|
const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
|
|
1.414213562f, /* ACN 0 (W), sqrt(2) */
|
|
1.732050808f, /* ACN 1 (Y), sqrt(3) */
|
|
1.732050808f, /* ACN 2 (Z), sqrt(3) */
|
|
1.732050808f, /* ACN 3 (X), sqrt(3) */
|
|
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
|
|
2.236067978f, /* ACN 6 (R), sqrt(5) */
|
|
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
|
|
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
|
|
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
|
|
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
|
|
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
|
|
2.645751311f, /* ACN 12 (K), sqrt(7) */
|
|
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
|
|
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
|
|
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
|
|
};
|
|
|
|
|
|
#define HF_BAND 0
|
|
#define LF_BAND 1
|
|
#define NUM_BANDS 2
|
|
|
|
/* These points are in AL coordinates! */
|
|
static const ALfloat Ambi3DPoints[8][3] = {
|
|
{ -0.577350269f, 0.577350269f, -0.577350269f },
|
|
{ 0.577350269f, 0.577350269f, -0.577350269f },
|
|
{ -0.577350269f, 0.577350269f, 0.577350269f },
|
|
{ 0.577350269f, 0.577350269f, 0.577350269f },
|
|
{ -0.577350269f, -0.577350269f, -0.577350269f },
|
|
{ 0.577350269f, -0.577350269f, -0.577350269f },
|
|
{ -0.577350269f, -0.577350269f, 0.577350269f },
|
|
{ 0.577350269f, -0.577350269f, 0.577350269f },
|
|
};
|
|
static const ALfloat Ambi3DDecoder[8][MAX_AMBI_COEFFS] = {
|
|
{ 0.125f, 0.125f, 0.125f, 0.125f },
|
|
{ 0.125f, -0.125f, 0.125f, 0.125f },
|
|
{ 0.125f, 0.125f, 0.125f, -0.125f },
|
|
{ 0.125f, -0.125f, 0.125f, -0.125f },
|
|
{ 0.125f, 0.125f, -0.125f, 0.125f },
|
|
{ 0.125f, -0.125f, -0.125f, 0.125f },
|
|
{ 0.125f, 0.125f, -0.125f, -0.125f },
|
|
{ 0.125f, -0.125f, -0.125f, -0.125f },
|
|
};
|
|
static const ALfloat Ambi3DDecoderHFScale[MAX_AMBI_COEFFS] = {
|
|
2.0f,
|
|
1.15470054f, 1.15470054f, 1.15470054f
|
|
};
|
|
|
|
|
|
/* NOTE: BandSplitter filters are unused with single-band decoding */
|
|
typedef struct BFormatDec {
|
|
ALuint Enabled; /* Bitfield of enabled channels. */
|
|
|
|
union {
|
|
alignas(16) ALfloat Dual[MAX_OUTPUT_CHANNELS][NUM_BANDS][MAX_AMBI_COEFFS];
|
|
alignas(16) ALfloat Single[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
|
|
} Matrix;
|
|
|
|
BandSplitter XOver[MAX_AMBI_COEFFS];
|
|
|
|
ALfloat (*Samples)[BUFFERSIZE];
|
|
/* These two alias into Samples */
|
|
ALfloat (*SamplesHF)[BUFFERSIZE];
|
|
ALfloat (*SamplesLF)[BUFFERSIZE];
|
|
|
|
alignas(16) ALfloat ChannelMix[BUFFERSIZE];
|
|
|
|
struct {
|
|
BandSplitter XOver;
|
|
ALfloat Gains[NUM_BANDS];
|
|
} UpSampler[4];
|
|
|
|
ALsizei NumChannels;
|
|
ALboolean DualBand;
|
|
} BFormatDec;
|
|
|
|
BFormatDec *bformatdec_alloc()
|
|
{
|
|
return reinterpret_cast<BFormatDec*>(al_calloc(16, sizeof(BFormatDec)));
|
|
}
|
|
|
|
void bformatdec_free(BFormatDec **dec)
|
|
{
|
|
if(dec && *dec)
|
|
{
|
|
al_free((*dec)->Samples);
|
|
(*dec)->Samples = NULL;
|
|
(*dec)->SamplesHF = NULL;
|
|
(*dec)->SamplesLF = NULL;
|
|
|
|
al_free(*dec);
|
|
*dec = NULL;
|
|
}
|
|
}
|
|
|
|
void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALsizei chancount, ALuint srate, const ALsizei chanmap[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
static const ALsizei map2DTo3D[MAX_AMBI2D_COEFFS] = {
|
|
0, 1, 3, 4, 8, 9, 15
|
|
};
|
|
const ALfloat *coeff_scale = N3D2N3DScale;
|
|
bool periphonic;
|
|
ALfloat ratio;
|
|
ALsizei i;
|
|
|
|
al_free(dec->Samples);
|
|
dec->Samples = NULL;
|
|
dec->SamplesHF = NULL;
|
|
dec->SamplesLF = NULL;
|
|
|
|
dec->NumChannels = chancount;
|
|
dec->Samples = reinterpret_cast<ALfloat(*)[BUFFERSIZE]>(al_calloc(16,
|
|
dec->NumChannels*2 * sizeof(dec->Samples[0])));
|
|
dec->SamplesHF = dec->Samples;
|
|
dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
|
|
|
|
dec->Enabled = 0;
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
dec->Enabled |= 1 << chanmap[i];
|
|
|
|
if(conf->CoeffScale == ADS_SN3D)
|
|
coeff_scale = SN3D2N3DScale;
|
|
else if(conf->CoeffScale == ADS_FuMa)
|
|
coeff_scale = FuMa2N3DScale;
|
|
|
|
memset(dec->UpSampler, 0, sizeof(dec->UpSampler));
|
|
ratio = 400.0f / (ALfloat)srate;
|
|
for(i = 0;i < 4;i++)
|
|
bandsplit_init(&dec->UpSampler[i].XOver, ratio);
|
|
if((conf->ChanMask&AMBI_PERIPHONIC_MASK))
|
|
{
|
|
periphonic = true;
|
|
|
|
dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H3P :
|
|
(conf->ChanMask > 0xf) ? W_SCALE_2H2P : 1.0f;
|
|
dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
|
|
for(i = 1;i < 4;i++)
|
|
{
|
|
dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H3P :
|
|
(conf->ChanMask > 0xf) ? XYZ_SCALE_2H2P : 1.0f;
|
|
dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
periphonic = false;
|
|
|
|
dec->UpSampler[0].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? W_SCALE_3H0P :
|
|
(conf->ChanMask > 0xf) ? W_SCALE_2H0P : 1.0f;
|
|
dec->UpSampler[0].Gains[LF_BAND] = 1.0f;
|
|
for(i = 1;i < 3;i++)
|
|
{
|
|
dec->UpSampler[i].Gains[HF_BAND] = (conf->ChanMask > 0x1ff) ? XYZ_SCALE_3H0P :
|
|
(conf->ChanMask > 0xf) ? XYZ_SCALE_2H0P : 1.0f;
|
|
dec->UpSampler[i].Gains[LF_BAND] = 1.0f;
|
|
}
|
|
dec->UpSampler[3].Gains[HF_BAND] = 0.0f;
|
|
dec->UpSampler[3].Gains[LF_BAND] = 0.0f;
|
|
}
|
|
|
|
memset(&dec->Matrix, 0, sizeof(dec->Matrix));
|
|
if(conf->FreqBands == 1)
|
|
{
|
|
dec->DualBand = AL_FALSE;
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
{
|
|
ALsizei chan = chanmap[i];
|
|
ALfloat gain;
|
|
ALsizei j, k;
|
|
|
|
if(!periphonic)
|
|
{
|
|
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
|
|
{
|
|
ALsizei l = map2DTo3D[j];
|
|
if(j == 0) gain = conf->HFOrderGain[0];
|
|
else if(j == 1) gain = conf->HFOrderGain[1];
|
|
else if(j == 3) gain = conf->HFOrderGain[2];
|
|
else if(j == 5) gain = conf->HFOrderGain[3];
|
|
if((conf->ChanMask&(1<<l)))
|
|
dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
|
|
gain;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
|
|
{
|
|
if(j == 0) gain = conf->HFOrderGain[0];
|
|
else if(j == 1) gain = conf->HFOrderGain[1];
|
|
else if(j == 4) gain = conf->HFOrderGain[2];
|
|
else if(j == 9) gain = conf->HFOrderGain[3];
|
|
if((conf->ChanMask&(1<<j)))
|
|
dec->Matrix.Single[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
|
|
gain;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dec->DualBand = AL_TRUE;
|
|
|
|
ratio = conf->XOverFreq / (ALfloat)srate;
|
|
for(i = 0;i < MAX_AMBI_COEFFS;i++)
|
|
bandsplit_init(&dec->XOver[i], ratio);
|
|
|
|
ratio = powf(10.0f, conf->XOverRatio / 40.0f);
|
|
for(i = 0;i < conf->NumSpeakers;i++)
|
|
{
|
|
ALsizei chan = chanmap[i];
|
|
ALfloat gain;
|
|
ALsizei j, k;
|
|
|
|
if(!periphonic)
|
|
{
|
|
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
|
|
{
|
|
ALsizei l = map2DTo3D[j];
|
|
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
|
|
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
|
|
else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
|
|
else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
|
|
if((conf->ChanMask&(1<<l)))
|
|
dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
|
|
coeff_scale[l] * gain;
|
|
}
|
|
for(j = 0,k = 0;j < MAX_AMBI2D_COEFFS;j++)
|
|
{
|
|
ALsizei l = map2DTo3D[j];
|
|
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
|
|
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
|
|
else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
|
|
else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
|
|
if((conf->ChanMask&(1<<l)))
|
|
dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
|
|
coeff_scale[l] * gain;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
|
|
{
|
|
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
|
|
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
|
|
else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
|
|
else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
|
|
if((conf->ChanMask&(1<<j)))
|
|
dec->Matrix.Dual[chan][HF_BAND][j] = conf->HFMatrix[i][k++] /
|
|
coeff_scale[j] * gain;
|
|
}
|
|
for(j = 0,k = 0;j < MAX_AMBI_COEFFS;j++)
|
|
{
|
|
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
|
|
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
|
|
else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
|
|
else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
|
|
if((conf->ChanMask&(1<<j)))
|
|
dec->Matrix.Dual[chan][LF_BAND][j] = conf->LFMatrix[i][k++] /
|
|
coeff_scale[j] * gain;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void bformatdec_process(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
|
|
{
|
|
ALsizei chan, i;
|
|
|
|
if(dec->DualBand)
|
|
{
|
|
for(i = 0;i < dec->NumChannels;i++)
|
|
bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
|
|
InSamples[i], SamplesToDo);
|
|
|
|
for(chan = 0;chan < OutChannels;chan++)
|
|
{
|
|
if(!(dec->Enabled&(1<<chan)))
|
|
continue;
|
|
|
|
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
|
|
MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][HF_BAND],
|
|
dec->SamplesHF, dec->NumChannels, 0, SamplesToDo
|
|
);
|
|
MixRowSamples(dec->ChannelMix, dec->Matrix.Dual[chan][LF_BAND],
|
|
dec->SamplesLF, dec->NumChannels, 0, SamplesToDo
|
|
);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
OutBuffer[chan][i] += dec->ChannelMix[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(chan = 0;chan < OutChannels;chan++)
|
|
{
|
|
if(!(dec->Enabled&(1<<chan)))
|
|
continue;
|
|
|
|
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
|
|
MixRowSamples(dec->ChannelMix, dec->Matrix.Single[chan], InSamples,
|
|
dec->NumChannels, 0, SamplesToDo);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
OutBuffer[chan][i] += dec->ChannelMix[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei InChannels, ALsizei SamplesToDo)
|
|
{
|
|
ALsizei i;
|
|
|
|
/* This up-sampler leverages the differences observed in dual-band second-
|
|
* and third-order decoder matrices compared to first-order. For the same
|
|
* output channel configuration, the low-frequency matrix has identical
|
|
* coefficients in the shared input channels, while the high-frequency
|
|
* matrix has extra scalars applied to the W channel and X/Y/Z channels.
|
|
* Mixing the first-order content into the higher-order stream with the
|
|
* appropriate counter-scales applied to the HF response results in the
|
|
* subsequent higher-order decode generating the same response as a first-
|
|
* order decode.
|
|
*/
|
|
for(i = 0;i < InChannels;i++)
|
|
{
|
|
/* First, split the first-order components into low and high frequency
|
|
* bands.
|
|
*/
|
|
bandsplit_process(&dec->UpSampler[i].XOver,
|
|
dec->Samples[HF_BAND], dec->Samples[LF_BAND],
|
|
InSamples[i], SamplesToDo
|
|
);
|
|
|
|
/* Now write each band to the output. */
|
|
MixRowSamples(OutBuffer[i], dec->UpSampler[i].Gains,
|
|
dec->Samples, NUM_BANDS, 0, SamplesToDo
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
#define INVALID_UPSAMPLE_INDEX INT_MAX
|
|
|
|
static ALsizei GetACNIndex(const BFChannelConfig *chans, ALsizei numchans, ALsizei acn)
|
|
{
|
|
ALsizei i;
|
|
for(i = 0;i < numchans;i++)
|
|
{
|
|
if(chans[i].Index == acn)
|
|
return i;
|
|
}
|
|
return INVALID_UPSAMPLE_INDEX;
|
|
}
|
|
#define GetChannelForACN(b, a) GetACNIndex((b).Ambi.Map, (b).NumChannels, (a))
|
|
|
|
typedef struct AmbiUpsampler {
|
|
alignas(16) ALfloat Samples[NUM_BANDS][BUFFERSIZE];
|
|
|
|
BandSplitter XOver[4];
|
|
|
|
ALfloat Gains[4][MAX_OUTPUT_CHANNELS][NUM_BANDS];
|
|
} AmbiUpsampler;
|
|
|
|
AmbiUpsampler *ambiup_alloc()
|
|
{
|
|
return reinterpret_cast<AmbiUpsampler*>(al_calloc(16, sizeof(AmbiUpsampler)));
|
|
}
|
|
|
|
void ambiup_free(struct AmbiUpsampler **ambiup)
|
|
{
|
|
if(ambiup)
|
|
{
|
|
al_free(*ambiup);
|
|
*ambiup = NULL;
|
|
}
|
|
}
|
|
|
|
void ambiup_reset(struct AmbiUpsampler *ambiup, const ALCdevice *device, ALfloat w_scale, ALfloat xyz_scale)
|
|
{
|
|
ALfloat ratio;
|
|
ALsizei i;
|
|
|
|
ratio = 400.0f / (ALfloat)device->Frequency;
|
|
for(i = 0;i < 4;i++)
|
|
bandsplit_init(&ambiup->XOver[i], ratio);
|
|
|
|
memset(ambiup->Gains, 0, sizeof(ambiup->Gains));
|
|
if(device->Dry.CoeffCount > 0)
|
|
{
|
|
ALfloat encgains[8][MAX_OUTPUT_CHANNELS];
|
|
ALsizei j;
|
|
size_t k;
|
|
|
|
for(k = 0;k < COUNTOF(Ambi3DPoints);k++)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS] = { 0.0f };
|
|
CalcDirectionCoeffs(Ambi3DPoints[k], 0.0f, coeffs);
|
|
ComputePanGains(&device->Dry, coeffs, 1.0f, encgains[k]);
|
|
}
|
|
|
|
/* Combine the matrices that do the in->virt and virt->out conversions
|
|
* so we get a single in->out conversion. NOTE: the Encoder matrix
|
|
* (encgains) and output are transposed, so the input channels line up
|
|
* with the rows and the output channels line up with the columns.
|
|
*/
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
for(j = 0;j < device->Dry.NumChannels;j++)
|
|
{
|
|
ALdouble gain = 0.0;
|
|
for(k = 0;k < COUNTOF(Ambi3DDecoder);k++)
|
|
gain += (ALdouble)Ambi3DDecoder[k][i] * encgains[k][j];
|
|
ambiup->Gains[i][j][HF_BAND] = (ALfloat)(gain * Ambi3DDecoderHFScale[i]);
|
|
ambiup->Gains[i][j][LF_BAND] = (ALfloat)gain;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
ALsizei index = GetChannelForACN(device->Dry, i);
|
|
if(index != INVALID_UPSAMPLE_INDEX)
|
|
{
|
|
ALfloat scale = device->Dry.Ambi.Map[index].Scale;
|
|
ambiup->Gains[i][index][HF_BAND] = scale * ((i==0) ? w_scale : xyz_scale);
|
|
ambiup->Gains[i][index][LF_BAND] = scale;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ambiup_process(struct AmbiUpsampler *ambiup, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE], ALsizei OutChannels, const ALfloat (*RESTRICT InSamples)[BUFFERSIZE], ALsizei SamplesToDo)
|
|
{
|
|
ALsizei i, j;
|
|
|
|
for(i = 0;i < 4;i++)
|
|
{
|
|
bandsplit_process(&ambiup->XOver[i],
|
|
ambiup->Samples[HF_BAND], ambiup->Samples[LF_BAND],
|
|
InSamples[i], SamplesToDo
|
|
);
|
|
|
|
for(j = 0;j < OutChannels;j++)
|
|
MixRowSamples(OutBuffer[j], ambiup->Gains[i][j],
|
|
ambiup->Samples, NUM_BANDS, 0, SamplesToDo
|
|
);
|
|
}
|
|
}
|