openal-soft/alc/backends/opensl.cpp

966 lines
32 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is an OpenAL backend for Android using the native audio APIs based on
* OpenSL ES 1.0.1. It is based on source code for the native-audio sample app
* bundled with NDK.
*/
#include "config.h"
#include "backends/opensl.h"
#include <stdlib.h>
#include <jni.h>
#include <new>
#include <array>
#include <cstring>
#include <thread>
#include <functional>
#include "alcmain.h"
#include "alexcpt.h"
#include "alu.h"
#include "compat.h"
#include "endiantest.h"
#include "ringbuffer.h"
#include "threads.h"
#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>
#include <SLES/OpenSLES_AndroidConfiguration.h>
namespace {
/* Helper macros */
#define EXTRACT_VCALL_ARGS(...) __VA_ARGS__))
#define VCALL(obj, func) ((*(obj))->func((obj), EXTRACT_VCALL_ARGS
#define VCALL0(obj, func) ((*(obj))->func((obj) EXTRACT_VCALL_ARGS
constexpr ALCchar opensl_device[] = "OpenSL";
SLuint32 GetChannelMask(DevFmtChannels chans)
{
switch(chans)
{
case DevFmtMono: return SL_SPEAKER_FRONT_CENTER;
case DevFmtStereo: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
case DevFmtQuad: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT |
SL_SPEAKER_BACK_LEFT | SL_SPEAKER_BACK_RIGHT;
case DevFmtX51: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT |
SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_SIDE_LEFT |
SL_SPEAKER_SIDE_RIGHT;
case DevFmtX51Rear: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT |
SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_LEFT |
SL_SPEAKER_BACK_RIGHT;
case DevFmtX61: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT |
SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_CENTER |
SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT;
case DevFmtX71: return SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT |
SL_SPEAKER_FRONT_CENTER | SL_SPEAKER_LOW_FREQUENCY | SL_SPEAKER_BACK_LEFT |
SL_SPEAKER_BACK_RIGHT | SL_SPEAKER_SIDE_LEFT | SL_SPEAKER_SIDE_RIGHT;
case DevFmtAmbi3D:
break;
}
return 0;
}
#ifdef SL_ANDROID_DATAFORMAT_PCM_EX
SLuint32 GetTypeRepresentation(DevFmtType type)
{
switch(type)
{
case DevFmtUByte:
case DevFmtUShort:
case DevFmtUInt:
return SL_ANDROID_PCM_REPRESENTATION_UNSIGNED_INT;
case DevFmtByte:
case DevFmtShort:
case DevFmtInt:
return SL_ANDROID_PCM_REPRESENTATION_SIGNED_INT;
case DevFmtFloat:
return SL_ANDROID_PCM_REPRESENTATION_FLOAT;
}
return 0;
}
#endif
const char *res_str(SLresult result)
{
switch(result)
{
case SL_RESULT_SUCCESS: return "Success";
case SL_RESULT_PRECONDITIONS_VIOLATED: return "Preconditions violated";
case SL_RESULT_PARAMETER_INVALID: return "Parameter invalid";
case SL_RESULT_MEMORY_FAILURE: return "Memory failure";
case SL_RESULT_RESOURCE_ERROR: return "Resource error";
case SL_RESULT_RESOURCE_LOST: return "Resource lost";
case SL_RESULT_IO_ERROR: return "I/O error";
case SL_RESULT_BUFFER_INSUFFICIENT: return "Buffer insufficient";
case SL_RESULT_CONTENT_CORRUPTED: return "Content corrupted";
case SL_RESULT_CONTENT_UNSUPPORTED: return "Content unsupported";
case SL_RESULT_CONTENT_NOT_FOUND: return "Content not found";
case SL_RESULT_PERMISSION_DENIED: return "Permission denied";
case SL_RESULT_FEATURE_UNSUPPORTED: return "Feature unsupported";
case SL_RESULT_INTERNAL_ERROR: return "Internal error";
case SL_RESULT_UNKNOWN_ERROR: return "Unknown error";
case SL_RESULT_OPERATION_ABORTED: return "Operation aborted";
case SL_RESULT_CONTROL_LOST: return "Control lost";
#ifdef SL_RESULT_READONLY
case SL_RESULT_READONLY: return "ReadOnly";
#endif
#ifdef SL_RESULT_ENGINEOPTION_UNSUPPORTED
case SL_RESULT_ENGINEOPTION_UNSUPPORTED: return "Engine option unsupported";
#endif
#ifdef SL_RESULT_SOURCE_SINK_INCOMPATIBLE
case SL_RESULT_SOURCE_SINK_INCOMPATIBLE: return "Source/Sink incompatible";
#endif
}
return "Unknown error code";
}
#define PRINTERR(x, s) do { \
if UNLIKELY((x) != SL_RESULT_SUCCESS) \
ERR("%s: %s\n", (s), res_str((x))); \
} while(0)
struct OpenSLPlayback final : public BackendBase {
OpenSLPlayback(ALCdevice *device) noexcept : BackendBase{device} { }
~OpenSLPlayback() override;
void process(SLAndroidSimpleBufferQueueItf bq) noexcept;
static void processC(SLAndroidSimpleBufferQueueItf bq, void *context) noexcept
{ static_cast<OpenSLPlayback*>(context)->process(bq); }
int mixerProc();
void open(const ALCchar *name) override;
bool reset() override;
bool start() override;
void stop() override;
ClockLatency getClockLatency() override;
/* engine interfaces */
SLObjectItf mEngineObj{nullptr};
SLEngineItf mEngine{nullptr};
/* output mix interfaces */
SLObjectItf mOutputMix{nullptr};
/* buffer queue player interfaces */
SLObjectItf mBufferQueueObj{nullptr};
RingBufferPtr mRing{nullptr};
al::semaphore mSem;
ALuint mFrameSize{0};
std::atomic<bool> mKillNow{true};
std::thread mThread;
DEF_NEWDEL(OpenSLPlayback)
};
OpenSLPlayback::~OpenSLPlayback()
{
if(mBufferQueueObj)
VCALL0(mBufferQueueObj,Destroy)();
mBufferQueueObj = nullptr;
if(mOutputMix)
VCALL0(mOutputMix,Destroy)();
mOutputMix = nullptr;
if(mEngineObj)
VCALL0(mEngineObj,Destroy)();
mEngineObj = nullptr;
mEngine = nullptr;
}
/* this callback handler is called every time a buffer finishes playing */
void OpenSLPlayback::process(SLAndroidSimpleBufferQueueItf) noexcept
{
/* A note on the ringbuffer usage: The buffer queue seems to hold on to the
* pointer passed to the Enqueue method, rather than copying the audio.
* Consequently, the ringbuffer contains the audio that is currently queued
* and waiting to play. This process() callback is called when a buffer is
* finished, so we simply move the read pointer up to indicate the space is
* available for writing again, and wake up the mixer thread to mix and
* queue more audio.
*/
mRing->readAdvance(1);
mSem.post();
}
int OpenSLPlayback::mixerProc()
{
SetRTPriority();
althrd_setname(MIXER_THREAD_NAME);
SLPlayItf player;
SLAndroidSimpleBufferQueueItf bufferQueue;
SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue)};
PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDSIMPLEBUFFERQUEUE");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player);
PRINTERR(result, "bufferQueue->GetInterface SL_IID_PLAY");
}
const size_t frame_step{mDevice->channelsFromFmt()};
if(SL_RESULT_SUCCESS != result)
aluHandleDisconnect(mDevice, "Failed to get playback buffer: 0x%08x", result);
while(SL_RESULT_SUCCESS == result && !mKillNow.load(std::memory_order_acquire) &&
mDevice->Connected.load(std::memory_order_acquire))
{
if(mRing->writeSpace() == 0)
{
SLuint32 state{0};
result = VCALL(player,GetPlayState)(&state);
PRINTERR(result, "player->GetPlayState");
if(SL_RESULT_SUCCESS == result && state != SL_PLAYSTATE_PLAYING)
{
result = VCALL(player,SetPlayState)(SL_PLAYSTATE_PLAYING);
PRINTERR(result, "player->SetPlayState");
}
if(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(mDevice, "Failed to start platback: 0x%08x", result);
break;
}
if(mRing->writeSpace() == 0)
{
mSem.wait();
continue;
}
}
std::unique_lock<std::recursive_mutex> dlock{mMutex};
auto data = mRing->getWriteVector();
aluMixData(mDevice, data.first.buf,
static_cast<ALuint>(data.first.len*mDevice->UpdateSize), frame_step);
if(data.second.len > 0)
aluMixData(mDevice, data.second.buf,
static_cast<ALuint>(data.second.len*mDevice->UpdateSize), frame_step);
size_t todo{data.first.len + data.second.len};
mRing->writeAdvance(todo);
dlock.unlock();
for(size_t i{0};i < todo;i++)
{
if(!data.first.len)
{
data.first = data.second;
data.second.buf = nullptr;
data.second.len = 0;
}
result = VCALL(bufferQueue,Enqueue)(data.first.buf, mDevice->UpdateSize*mFrameSize);
PRINTERR(result, "bufferQueue->Enqueue");
if(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(mDevice, "Failed to queue audio: 0x%08x", result);
break;
}
data.first.len--;
data.first.buf += mDevice->UpdateSize*mFrameSize;
}
}
return 0;
}
void OpenSLPlayback::open(const ALCchar *name)
{
if(!name)
name = opensl_device;
else if(strcmp(name, opensl_device) != 0)
throw al::backend_exception{ALC_INVALID_VALUE, "Device name \"%s\" not found", name};
// create engine
SLresult result{slCreateEngine(&mEngineObj, 0, nullptr, 0, nullptr, nullptr)};
PRINTERR(result, "slCreateEngine");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mEngineObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "engine->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mEngineObj,GetInterface)(SL_IID_ENGINE, &mEngine);
PRINTERR(result, "engine->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mEngine,CreateOutputMix)(&mOutputMix, 0, nullptr, nullptr);
PRINTERR(result, "engine->CreateOutputMix");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mOutputMix,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "outputMix->Realize");
}
if(SL_RESULT_SUCCESS != result)
{
if(mOutputMix)
VCALL0(mOutputMix,Destroy)();
mOutputMix = nullptr;
if(mEngineObj)
VCALL0(mEngineObj,Destroy)();
mEngineObj = nullptr;
mEngine = nullptr;
throw al::backend_exception{ALC_INVALID_VALUE,
"Failed to initialize OpenSL device: 0x%08x", result};
}
mDevice->DeviceName = name;
}
bool OpenSLPlayback::reset()
{
SLresult result;
if(mBufferQueueObj)
VCALL0(mBufferQueueObj,Destroy)();
mBufferQueueObj = nullptr;
mRing = nullptr;
#if 0
if(!mDevice->Flags.get<FrequencyRequest>())
{
/* FIXME: Disabled until I figure out how to get the Context needed for
* the getSystemService call.
*/
JNIEnv *env = Android_GetJNIEnv();
jobject jctx = Android_GetContext();
/* Get necessary stuff for using java.lang.Integer,
* android.content.Context, and android.media.AudioManager.
*/
jclass int_cls = JCALL(env,FindClass)("java/lang/Integer");
jmethodID int_parseint = JCALL(env,GetStaticMethodID)(int_cls,
"parseInt", "(Ljava/lang/String;)I"
);
TRACE("Integer: %p, parseInt: %p\n", int_cls, int_parseint);
jclass ctx_cls = JCALL(env,FindClass)("android/content/Context");
jfieldID ctx_audsvc = JCALL(env,GetStaticFieldID)(ctx_cls,
"AUDIO_SERVICE", "Ljava/lang/String;"
);
jmethodID ctx_getSysSvc = JCALL(env,GetMethodID)(ctx_cls,
"getSystemService", "(Ljava/lang/String;)Ljava/lang/Object;"
);
TRACE("Context: %p, AUDIO_SERVICE: %p, getSystemService: %p\n",
ctx_cls, ctx_audsvc, ctx_getSysSvc);
jclass audmgr_cls = JCALL(env,FindClass)("android/media/AudioManager");
jfieldID audmgr_prop_out_srate = JCALL(env,GetStaticFieldID)(audmgr_cls,
"PROPERTY_OUTPUT_SAMPLE_RATE", "Ljava/lang/String;"
);
jmethodID audmgr_getproperty = JCALL(env,GetMethodID)(audmgr_cls,
"getProperty", "(Ljava/lang/String;)Ljava/lang/String;"
);
TRACE("AudioManager: %p, PROPERTY_OUTPUT_SAMPLE_RATE: %p, getProperty: %p\n",
audmgr_cls, audmgr_prop_out_srate, audmgr_getproperty);
const char *strchars;
jstring strobj;
/* Now make the calls. */
//AudioManager audMgr = (AudioManager)getSystemService(Context.AUDIO_SERVICE);
strobj = JCALL(env,GetStaticObjectField)(ctx_cls, ctx_audsvc);
jobject audMgr = JCALL(env,CallObjectMethod)(jctx, ctx_getSysSvc, strobj);
strchars = JCALL(env,GetStringUTFChars)(strobj, nullptr);
TRACE("Context.getSystemService(%s) = %p\n", strchars, audMgr);
JCALL(env,ReleaseStringUTFChars)(strobj, strchars);
//String srateStr = audMgr.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE);
strobj = JCALL(env,GetStaticObjectField)(audmgr_cls, audmgr_prop_out_srate);
jstring srateStr = JCALL(env,CallObjectMethod)(audMgr, audmgr_getproperty, strobj);
strchars = JCALL(env,GetStringUTFChars)(strobj, nullptr);
TRACE("audMgr.getProperty(%s) = %p\n", strchars, srateStr);
JCALL(env,ReleaseStringUTFChars)(strobj, strchars);
//int sampleRate = Integer.parseInt(srateStr);
sampleRate = JCALL(env,CallStaticIntMethod)(int_cls, int_parseint, srateStr);
strchars = JCALL(env,GetStringUTFChars)(srateStr, nullptr);
TRACE("Got system sample rate %uhz (%s)\n", sampleRate, strchars);
JCALL(env,ReleaseStringUTFChars)(srateStr, strchars);
if(!sampleRate) sampleRate = device->Frequency;
else sampleRate = maxu(sampleRate, MIN_OUTPUT_RATE);
}
#endif
mDevice->FmtChans = DevFmtStereo;
mDevice->FmtType = DevFmtShort;
SetDefaultWFXChannelOrder(mDevice);
mFrameSize = mDevice->frameSizeFromFmt();
const std::array<SLInterfaceID,2> ids{{ SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION }};
const std::array<SLboolean,2> reqs{{ SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE }};
SLDataLocator_OutputMix loc_outmix{};
loc_outmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
loc_outmix.outputMix = mOutputMix;
SLDataSink audioSnk{};
audioSnk.pLocator = &loc_outmix;
audioSnk.pFormat = nullptr;
SLDataLocator_AndroidSimpleBufferQueue loc_bufq{};
loc_bufq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
loc_bufq.numBuffers = mDevice->BufferSize / mDevice->UpdateSize;
SLDataSource audioSrc{};
#ifdef SL_ANDROID_DATAFORMAT_PCM_EX
SLAndroidDataFormat_PCM_EX format_pcm_ex{};
format_pcm_ex.formatType = SL_ANDROID_DATAFORMAT_PCM_EX;
format_pcm_ex.numChannels = mDevice->channelsFromFmt();
format_pcm_ex.sampleRate = mDevice->Frequency * 1000;
format_pcm_ex.bitsPerSample = mDevice->bytesFromFmt() * 8;
format_pcm_ex.containerSize = format_pcm_ex.bitsPerSample;
format_pcm_ex.channelMask = GetChannelMask(mDevice->FmtChans);
format_pcm_ex.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN;
format_pcm_ex.representation = GetTypeRepresentation(mDevice->FmtType);
audioSrc.pLocator = &loc_bufq;
audioSrc.pFormat = &format_pcm_ex;
result = VCALL(mEngine,CreateAudioPlayer)(&mBufferQueueObj, &audioSrc, &audioSnk, ids.size(),
ids.data(), reqs.data());
if(SL_RESULT_SUCCESS != result)
#endif
{
/* Alter sample type according to what SLDataFormat_PCM can support. */
switch(mDevice->FmtType)
{
case DevFmtByte: mDevice->FmtType = DevFmtUByte; break;
case DevFmtUInt: mDevice->FmtType = DevFmtInt; break;
case DevFmtFloat:
case DevFmtUShort: mDevice->FmtType = DevFmtShort; break;
case DevFmtUByte:
case DevFmtShort:
case DevFmtInt:
break;
}
SLDataFormat_PCM format_pcm{};
format_pcm.formatType = SL_DATAFORMAT_PCM;
format_pcm.numChannels = mDevice->channelsFromFmt();
format_pcm.samplesPerSec = mDevice->Frequency * 1000;
format_pcm.bitsPerSample = mDevice->bytesFromFmt() * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(mDevice->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
audioSrc.pLocator = &loc_bufq;
audioSrc.pFormat = &format_pcm;
result = VCALL(mEngine,CreateAudioPlayer)(&mBufferQueueObj, &audioSrc, &audioSnk, ids.size(),
ids.data(), reqs.data());
PRINTERR(result, "engine->CreateAudioPlayer");
}
if(SL_RESULT_SUCCESS == result)
{
/* Set the stream type to "media" (games, music, etc), if possible. */
SLAndroidConfigurationItf config;
result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config);
PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDCONFIGURATION");
if(SL_RESULT_SUCCESS == result)
{
SLint32 streamType = SL_ANDROID_STREAM_MEDIA;
result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_STREAM_TYPE, &streamType,
sizeof(streamType));
PRINTERR(result, "config->SetConfiguration");
}
/* Clear any error since this was optional. */
result = SL_RESULT_SUCCESS;
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mBufferQueueObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "bufferQueue->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
const ALuint num_updates{mDevice->BufferSize / mDevice->UpdateSize};
mRing = RingBuffer::Create(num_updates, mFrameSize*mDevice->UpdateSize, true);
}
if(SL_RESULT_SUCCESS != result)
{
if(mBufferQueueObj)
VCALL0(mBufferQueueObj,Destroy)();
mBufferQueueObj = nullptr;
return false;
}
return true;
}
bool OpenSLPlayback::start()
{
mRing->reset();
SLAndroidSimpleBufferQueueItf bufferQueue;
SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue)};
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS != result)
return false;
result = VCALL(bufferQueue,RegisterCallback)(&OpenSLPlayback::processC, this);
PRINTERR(result, "bufferQueue->RegisterCallback");
if(SL_RESULT_SUCCESS != result) return false;
try {
mKillNow.store(false, std::memory_order_release);
mThread = std::thread(std::mem_fn(&OpenSLPlayback::mixerProc), this);
return true;
}
catch(std::exception& e) {
ERR("Could not create playback thread: %s\n", e.what());
}
catch(...) {
}
return false;
}
void OpenSLPlayback::stop()
{
if(mKillNow.exchange(true, std::memory_order_acq_rel) || !mThread.joinable())
return;
mSem.post();
mThread.join();
SLPlayItf player;
SLresult result{VCALL(mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player)};
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(player,SetPlayState)(SL_PLAYSTATE_STOPPED);
PRINTERR(result, "player->SetPlayState");
}
SLAndroidSimpleBufferQueueItf bufferQueue;
result = VCALL(mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue);
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL0(bufferQueue,Clear)();
PRINTERR(result, "bufferQueue->Clear");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(bufferQueue,RegisterCallback)(nullptr, nullptr);
PRINTERR(result, "bufferQueue->RegisterCallback");
}
if(SL_RESULT_SUCCESS == result)
{
SLAndroidSimpleBufferQueueState state;
do {
std::this_thread::yield();
result = VCALL(bufferQueue,GetState)(&state);
} while(SL_RESULT_SUCCESS == result && state.count > 0);
PRINTERR(result, "bufferQueue->GetState");
}
}
ClockLatency OpenSLPlayback::getClockLatency()
{
ClockLatency ret;
std::lock_guard<std::recursive_mutex> _{mMutex};
ret.ClockTime = GetDeviceClockTime(mDevice);
ret.Latency = std::chrono::seconds{mRing->readSpace() * mDevice->UpdateSize};
ret.Latency /= mDevice->Frequency;
return ret;
}
struct OpenSLCapture final : public BackendBase {
OpenSLCapture(ALCdevice *device) noexcept : BackendBase{device} { }
~OpenSLCapture() override;
void process(SLAndroidSimpleBufferQueueItf bq) noexcept;
static void processC(SLAndroidSimpleBufferQueueItf bq, void *context) noexcept
{ static_cast<OpenSLCapture*>(context)->process(bq); }
void open(const ALCchar *name) override;
bool start() override;
void stop() override;
ALCenum captureSamples(al::byte *buffer, ALCuint samples) override;
ALCuint availableSamples() override;
/* engine interfaces */
SLObjectItf mEngineObj{nullptr};
SLEngineItf mEngine;
/* recording interfaces */
SLObjectItf mRecordObj{nullptr};
RingBufferPtr mRing{nullptr};
ALCuint mSplOffset{0u};
ALuint mFrameSize{0};
DEF_NEWDEL(OpenSLCapture)
};
OpenSLCapture::~OpenSLCapture()
{
if(mRecordObj)
VCALL0(mRecordObj,Destroy)();
mRecordObj = nullptr;
if(mEngineObj)
VCALL0(mEngineObj,Destroy)();
mEngineObj = nullptr;
mEngine = nullptr;
}
void OpenSLCapture::process(SLAndroidSimpleBufferQueueItf) noexcept
{
/* A new chunk has been written into the ring buffer, advance it. */
mRing->writeAdvance(1);
}
void OpenSLCapture::open(const ALCchar* name)
{
if(!name)
name = opensl_device;
else if(strcmp(name, opensl_device) != 0)
throw al::backend_exception{ALC_INVALID_VALUE, "Device name \"%s\" not found", name};
SLresult result{slCreateEngine(&mEngineObj, 0, nullptr, 0, nullptr, nullptr)};
PRINTERR(result, "slCreateEngine");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mEngineObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "engine->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mEngineObj,GetInterface)(SL_IID_ENGINE, &mEngine);
PRINTERR(result, "engine->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
mFrameSize = mDevice->frameSizeFromFmt();
/* Ensure the total length is at least 100ms */
ALuint length{maxu(mDevice->BufferSize, mDevice->Frequency/10)};
/* Ensure the per-chunk length is at least 10ms, and no more than 50ms. */
ALuint update_len{clampu(mDevice->BufferSize/3, mDevice->Frequency/100,
mDevice->Frequency/100*5)};
ALuint num_updates{(length+update_len-1) / update_len};
mRing = RingBuffer::Create(num_updates, update_len*mFrameSize, false);
mDevice->UpdateSize = update_len;
mDevice->BufferSize = static_cast<ALuint>(mRing->writeSpace() * update_len);
}
if(SL_RESULT_SUCCESS == result)
{
const std::array<SLInterfaceID,2> ids{{ SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION }};
const std::array<SLboolean,2> reqs{{ SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE }};
SLDataLocator_IODevice loc_dev{};
loc_dev.locatorType = SL_DATALOCATOR_IODEVICE;
loc_dev.deviceType = SL_IODEVICE_AUDIOINPUT;
loc_dev.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT;
loc_dev.device = nullptr;
SLDataSource audioSrc{};
audioSrc.pLocator = &loc_dev;
audioSrc.pFormat = nullptr;
SLDataLocator_AndroidSimpleBufferQueue loc_bq{};
loc_bq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
loc_bq.numBuffers = mDevice->BufferSize / mDevice->UpdateSize;
SLDataSink audioSnk{};
#ifdef SL_ANDROID_DATAFORMAT_PCM_EX
SLAndroidDataFormat_PCM_EX format_pcm_ex{};
format_pcm_ex.formatType = SL_ANDROID_DATAFORMAT_PCM_EX;
format_pcm_ex.numChannels = mDevice->channelsFromFmt();
format_pcm_ex.sampleRate = mDevice->Frequency * 1000;
format_pcm_ex.bitsPerSample = mDevice->bytesFromFmt() * 8;
format_pcm_ex.containerSize = format_pcm_ex.bitsPerSample;
format_pcm_ex.channelMask = GetChannelMask(mDevice->FmtChans);
format_pcm_ex.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
format_pcm_ex.representation = GetTypeRepresentation(mDevice->FmtType);
audioSnk.pLocator = &loc_bq;
audioSnk.pFormat = &format_pcm_ex;
result = VCALL(mEngine,CreateAudioRecorder)(&mRecordObj, &audioSrc, &audioSnk,
ids.size(), ids.data(), reqs.data());
if(SL_RESULT_SUCCESS != result)
#endif
{
/* Fallback to SLDataFormat_PCM only if it supports the desired
* sample type.
*/
if(mDevice->FmtType == DevFmtUByte || mDevice->FmtType == DevFmtShort
|| mDevice->FmtType == DevFmtInt)
{
SLDataFormat_PCM format_pcm{};
format_pcm.formatType = SL_DATAFORMAT_PCM;
format_pcm.numChannels = mDevice->channelsFromFmt();
format_pcm.samplesPerSec = mDevice->Frequency * 1000;
format_pcm.bitsPerSample = mDevice->bytesFromFmt() * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(mDevice->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
audioSnk.pLocator = &loc_bq;
audioSnk.pFormat = &format_pcm;
result = VCALL(mEngine,CreateAudioRecorder)(&mRecordObj, &audioSrc, &audioSnk,
ids.size(), ids.data(), reqs.data());
}
PRINTERR(result, "engine->CreateAudioRecorder");
}
}
if(SL_RESULT_SUCCESS == result)
{
/* Set the record preset to "generic", if possible. */
SLAndroidConfigurationItf config;
result = VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config);
PRINTERR(result, "recordObj->GetInterface SL_IID_ANDROIDCONFIGURATION");
if(SL_RESULT_SUCCESS == result)
{
SLuint32 preset = SL_ANDROID_RECORDING_PRESET_GENERIC;
result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_RECORDING_PRESET, &preset,
sizeof(preset));
PRINTERR(result, "config->SetConfiguration");
}
/* Clear any error since this was optional. */
result = SL_RESULT_SUCCESS;
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mRecordObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "recordObj->Realize");
}
SLAndroidSimpleBufferQueueItf bufferQueue;
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &bufferQueue);
PRINTERR(result, "recordObj->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(bufferQueue,RegisterCallback)(&OpenSLCapture::processC, this);
PRINTERR(result, "bufferQueue->RegisterCallback");
}
if(SL_RESULT_SUCCESS == result)
{
const ALuint chunk_size{mDevice->UpdateSize * mFrameSize};
auto data = mRing->getWriteVector();
for(size_t i{0u};i < data.first.len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data.first.buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
for(size_t i{0u};i < data.second.len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data.second.buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
}
if(SL_RESULT_SUCCESS != result)
{
if(mRecordObj)
VCALL0(mRecordObj,Destroy)();
mRecordObj = nullptr;
if(mEngineObj)
VCALL0(mEngineObj,Destroy)();
mEngineObj = nullptr;
mEngine = nullptr;
throw al::backend_exception{ALC_INVALID_VALUE,
"Failed to initialize OpenSL device: 0x%08x", result};
}
mDevice->DeviceName = name;
}
bool OpenSLCapture::start()
{
SLRecordItf record;
SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_RECORD, &record)};
PRINTERR(result, "recordObj->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(record,SetRecordState)(SL_RECORDSTATE_RECORDING);
PRINTERR(result, "record->SetRecordState");
}
if(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(mDevice, "Failed to start capture: 0x%08x", result);
return false;
}
return true;
}
void OpenSLCapture::stop()
{
SLRecordItf record;
SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_RECORD, &record)};
PRINTERR(result, "recordObj->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(record,SetRecordState)(SL_RECORDSTATE_PAUSED);
PRINTERR(result, "record->SetRecordState");
}
}
ALCenum OpenSLCapture::captureSamples(al::byte *buffer, ALCuint samples)
{
SLAndroidSimpleBufferQueueItf bufferQueue{};
if LIKELY(mDevice->Connected.load(std::memory_order_acquire))
{
const SLresult result{VCALL(mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue)};
PRINTERR(result, "recordObj->GetInterface");
if UNLIKELY(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(mDevice, "Failed to get capture buffer queue: 0x%08x", result);
bufferQueue = nullptr;
}
}
const ALuint update_size{mDevice->UpdateSize};
const ALuint chunk_size{update_size * mFrameSize};
/* Read the desired samples from the ring buffer then advance its read
* pointer.
*/
auto data = mRing->getReadVector();
for(ALCuint i{0};i < samples;)
{
const ALCuint rem{minu(samples - i, update_size - mSplOffset)};
std::copy_n(data.first.buf + mSplOffset*mFrameSize, rem*mFrameSize, buffer + i*mFrameSize);
mSplOffset += rem;
if(mSplOffset == update_size)
{
/* Finished a chunk, reset the offset and advance the read pointer. */
mSplOffset = 0;
mRing->readAdvance(1);
if LIKELY(bufferQueue)
{
const SLresult result{VCALL(bufferQueue,Enqueue)(data.first.buf, chunk_size)};
PRINTERR(result, "bufferQueue->Enqueue");
if UNLIKELY(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(mDevice, "Failed to update capture buffer: 0x%08x",
result);
bufferQueue = nullptr;
}
}
data.first.len--;
if(!data.first.len)
data.first = data.second;
else
data.first.buf += chunk_size;
}
i += rem;
}
return ALC_NO_ERROR;
}
ALCuint OpenSLCapture::availableSamples()
{ return static_cast<ALuint>(mRing->readSpace()*mDevice->UpdateSize - mSplOffset); }
} // namespace
bool OSLBackendFactory::init() { return true; }
bool OSLBackendFactory::querySupport(BackendType type)
{ return (type == BackendType::Playback || type == BackendType::Capture); }
void OSLBackendFactory::probe(DevProbe type, std::string *outnames)
{
switch(type)
{
case DevProbe::Playback:
case DevProbe::Capture:
/* Includes null char. */
outnames->append(opensl_device, sizeof(opensl_device));
break;
}
}
BackendPtr OSLBackendFactory::createBackend(ALCdevice *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new OpenSLPlayback{device}};
if(type == BackendType::Capture)
return BackendPtr{new OpenSLCapture{device}};
return nullptr;
}
BackendFactory &OSLBackendFactory::getFactory()
{
static OSLBackendFactory factory{};
return factory;
}