Chris Robinson 611bd0b2d3 Add a method to calculate gains given a sound point and its half-width, and use it for reverb
The half-width ranges from 0 to pi, and essentially specifies the coverage area
around the listener. At 0, it's an infinitely small point sound and behaves
like a usual panning sound. At pi/2 it covers half the area, and at pi it
covers the whole area.
2012-04-28 08:21:53 -07:00

324 lines
9.1 KiB
C

#ifndef _ALU_H_
#define _ALU_H_
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include <limits.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
/* HACK: Seems cross-compiling with MinGW includes the wrong float.h, which
* doesn't define Windows' _controlfp and related macros */
#if defined(__MINGW32__) && !defined(_RC_CHOP)
/* Control word masks for unMask */
#define _MCW_EM 0x0008001F /* Error masks */
#define _MCW_IC 0x00040000 /* Infinity */
#define _MCW_RC 0x00000300 /* Rounding */
#define _MCW_PC 0x00030000 /* Precision */
/* Control word values for unNew (use with related unMask above) */
#define _EM_INVALID 0x00000010
#define _EM_DENORMAL 0x00080000
#define _EM_ZERODIVIDE 0x00000008
#define _EM_OVERFLOW 0x00000004
#define _EM_UNDERFLOW 0x00000002
#define _EM_INEXACT 0x00000001
#define _IC_AFFINE 0x00040000
#define _IC_PROJECTIVE 0x00000000
#define _RC_CHOP 0x00000300
#define _RC_UP 0x00000200
#define _RC_DOWN 0x00000100
#define _RC_NEAR 0x00000000
#define _PC_24 0x00020000
#define _PC_53 0x00010000
#define _PC_64 0x00000000
_CRTIMP unsigned int __cdecl __MINGW_NOTHROW _controlfp (unsigned int unNew, unsigned int unMask);
#endif
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#define F_PI (3.14159265358979323846f) /* pi */
#define F_PI_2 (1.57079632679489661923f) /* pi/2 */
#ifdef HAVE_POWF
#define aluPow(x,y) (powf((x),(y)))
#else
#define aluPow(x,y) ((ALfloat)pow((double)(x),(double)(y)))
#endif
#ifdef HAVE_SQRTF
#define aluSqrt(x) (sqrtf((x)))
#else
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
#endif
#ifdef HAVE_COSF
#define aluCos(x) (cosf((x)))
#else
#define aluCos(x) ((ALfloat)cos((double)(x)))
#endif
#ifdef HAVE_SINF
#define aluSin(x) (sinf((x)))
#else
#define aluSin(x) ((ALfloat)sin((double)(x)))
#endif
#ifdef HAVE_ACOSF
#define aluAcos(x) (acosf((x)))
#else
#define aluAcos(x) ((ALfloat)acos((double)(x)))
#endif
#ifdef HAVE_ASINF
#define aluAsin(x) (asinf((x)))
#else
#define aluAsin(x) ((ALfloat)asin((double)(x)))
#endif
#ifdef HAVE_ATANF
#define aluAtan(x) (atanf((x)))
#else
#define aluAtan(x) ((ALfloat)atan((double)(x)))
#endif
#ifdef HAVE_ATAN2F
#define aluAtan2(x,y) (atan2f((x),(y)))
#else
#define aluAtan2(x,y) ((ALfloat)atan2((double)(x),(double)(y)))
#endif
#ifdef HAVE_FABSF
#define aluFabs(x) (fabsf((x)))
#else
#define aluFabs(x) ((ALfloat)fabs((double)(x)))
#endif
#ifdef HAVE_LOG10F
#define aluLog10(x) (log10f((x)))
#else
#define aluLog10(x) ((ALfloat)log10((double)(x)))
#endif
#ifdef HAVE_FLOORF
#define aluFloor(x) (floorf((x)))
#else
#define aluFloor(x) ((ALfloat)floor((double)(x)))
#endif
#define QUADRANT_NUM 128
#define LUT_NUM (4 * QUADRANT_NUM)
#ifdef __cplusplus
extern "C" {
#endif
struct ALsource;
struct ALbuffer;
struct DirectParams;
struct SendParams;
typedef ALvoid (*DryMixerFunc)(struct ALsource *self, ALCdevice *Device,
struct DirectParams *params,
const ALfloat *RESTRICT data, ALuint srcfrac,
ALuint OutPos, ALuint SamplesToDo,
ALuint BufferSize);
typedef ALvoid (*WetMixerFunc)(struct ALsource *self, ALuint sendidx,
struct SendParams *params,
const ALfloat *RESTRICT data, ALuint srcfrac,
ALuint OutPos, ALuint SamplesToDo,
ALuint BufferSize);
enum Resampler {
PointResampler,
LinearResampler,
CubicResampler,
ResamplerMax,
};
enum Channel {
FRONT_LEFT = 0,
FRONT_RIGHT,
FRONT_CENTER,
LFE,
BACK_LEFT,
BACK_RIGHT,
BACK_CENTER,
SIDE_LEFT,
SIDE_RIGHT,
MAXCHANNELS
};
enum DistanceModel {
InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
InverseDistance = AL_INVERSE_DISTANCE,
LinearDistance = AL_LINEAR_DISTANCE,
ExponentDistance = AL_EXPONENT_DISTANCE,
DisableDistance = AL_NONE,
DefaultDistanceModel = InverseDistanceClamped
};
#define BUFFERSIZE 4096
#define FRACTIONBITS (14)
#define FRACTIONONE (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)
/* Size for temporary stack storage of buffer data. Must be a multiple of the
* size of ALfloat, ie, 4. Larger values need more stack, while smaller values
* may need more iterations. The value needs to be a sensible size, however, as
* it constrains the max stepping value used for mixing.
* The mixer requires being able to do two samplings per mixing loop. A 16KB
* buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic
* resampler (which requires 3 padding sample frames), this limits the maximum
* step to about 508. This means that buffer_freq*source_pitch cannot exceed
* device_freq*508 for an 8-channel 32-bit buffer. */
#ifndef STACK_DATA_SIZE
#define STACK_DATA_SIZE 16384
#endif
static __inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
static __inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
{ return minf(max, maxf(min, val)); }
static __inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
static __inline ALuint maxu(ALuint a, ALuint b)
{ return ((a > b) ? a : b); }
static __inline ALuint clampu(ALuint val, ALuint min, ALuint max)
{ return minu(max, maxu(min, val)); }
static __inline ALint mini(ALint a, ALint b)
{ return ((a > b) ? b : a); }
static __inline ALint maxi(ALint a, ALint b)
{ return ((a > b) ? a : b); }
static __inline ALint clampi(ALint val, ALint min, ALint max)
{ return mini(max, maxi(min, val)); }
static __inline ALint64 mini64(ALint64 a, ALint64 b)
{ return ((a > b) ? b : a); }
static __inline ALint64 maxi64(ALint64 a, ALint64 b)
{ return ((a > b) ? a : b); }
static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
{ return mini64(max, maxi64(min, val)); }
static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
{
return val1 + (val2-val1)*mu;
}
static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
{
ALfloat mu2 = mu*mu;
ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
ALfloat a2 = -0.5f*val0 + 0.5f*val2;
ALfloat a3 = val1;
return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
}
static __inline int SetMixerFPUMode(void)
{
#if defined(_FPU_GETCW) && defined(_FPU_SETCW)
fpu_control_t fpuState, newState;
_FPU_GETCW(fpuState);
newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE |
_FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO);
newState |= _FPU_SINGLE | _FPU_RC_ZERO;
_FPU_SETCW(newState);
#else
int fpuState;
#if defined(HAVE__CONTROLFP)
fpuState = _controlfp(0, 0);
(void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC);
#elif defined(HAVE_FESETROUND)
fpuState = fegetround();
fesetround(FE_TOWARDZERO);
#endif
#endif
return fpuState;
}
static __inline void RestoreFPUMode(int state)
{
#if defined(_FPU_GETCW) && defined(_FPU_SETCW)
fpu_control_t fpuState = state;
_FPU_SETCW(fpuState);
#elif defined(HAVE__CONTROLFP)
_controlfp(state, _MCW_RC|_MCW_PC);
#elif defined(HAVE_FESETROUND)
fesetround(state);
#endif
}
static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
static __inline void aluNormalize(ALfloat *inVector)
{
ALfloat length, inverse_length;
length = aluSqrt(aluDotproduct(inVector, inVector));
if(length > 0.0f)
{
inverse_length = 1.0f/length;
inVector[0] *= inverse_length;
inVector[1] *= inverse_length;
inVector[2] *= inverse_length;
}
}
ALvoid aluInitPanning(ALCdevice *Device);
ALint aluCart2LUTpos(ALfloat im, ALfloat re);
ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains);
ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
DryMixerFunc SelectDirectMixer(enum Resampler Resampler);
DryMixerFunc SelectHrtfMixer(enum Resampler Resampler);
WetMixerFunc SelectSendMixer(enum Resampler Resampler);
ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo);
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
ALvoid aluHandleDisconnect(ALCdevice *device);
extern ALfloat ConeScale;
extern ALfloat ZScale;
#ifdef __cplusplus
}
#endif
#endif