191 lines
6.5 KiB
C
191 lines
6.5 KiB
C
#include "config.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alu.h"
|
|
#include "alSource.h"
|
|
#include "alAuxEffectSlot.h"
|
|
|
|
|
|
static inline ALfloat point32(const ALfloat *vals, ALuint UNUSED(frac))
|
|
{ return vals[0]; }
|
|
static inline ALfloat lerp32(const ALfloat *vals, ALuint frac)
|
|
{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
|
|
static inline ALfloat fir4_32(const ALfloat *vals, ALuint frac)
|
|
{ return resample_fir4(vals[-1], vals[0], vals[1], vals[2], frac); }
|
|
static inline ALfloat fir8_32(const ALfloat *vals, ALuint frac)
|
|
{ return resample_fir8(vals[-3], vals[-2], vals[-1], vals[0], vals[1], vals[2], vals[3], vals[4], frac); }
|
|
|
|
|
|
const ALfloat *Resample_copy32_C(const BsincState* UNUSED(state), const ALfloat *src, ALuint UNUSED(frac),
|
|
ALuint UNUSED(increment), ALfloat *restrict dst, ALuint numsamples)
|
|
{
|
|
#if defined(HAVE_SSE) || defined(HAVE_NEON)
|
|
/* Avoid copying the source data if it's aligned like the destination. */
|
|
if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
|
|
return src;
|
|
#endif
|
|
memcpy(dst, src, numsamples*sizeof(ALfloat));
|
|
return dst;
|
|
}
|
|
|
|
#define DECL_TEMPLATE(Sampler) \
|
|
const ALfloat *Resample_##Sampler##_C(const BsincState* UNUSED(state), \
|
|
const ALfloat *src, ALuint frac, ALuint increment, \
|
|
ALfloat *restrict dst, ALuint numsamples) \
|
|
{ \
|
|
ALuint i; \
|
|
for(i = 0;i < numsamples;i++) \
|
|
{ \
|
|
dst[i] = Sampler(src, frac); \
|
|
\
|
|
frac += increment; \
|
|
src += frac>>FRACTIONBITS; \
|
|
frac &= FRACTIONMASK; \
|
|
} \
|
|
return dst; \
|
|
}
|
|
|
|
DECL_TEMPLATE(point32)
|
|
DECL_TEMPLATE(lerp32)
|
|
DECL_TEMPLATE(fir4_32)
|
|
DECL_TEMPLATE(fir8_32)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
const ALfloat *Resample_bsinc32_C(const BsincState *state, const ALfloat *src, ALuint frac,
|
|
ALuint increment, ALfloat *restrict dst, ALuint dstlen)
|
|
{
|
|
const ALfloat *fil, *scd, *phd, *spd;
|
|
const ALfloat sf = state->sf;
|
|
const ALuint m = state->m;
|
|
const ALint l = state->l;
|
|
ALuint j_f, pi, i;
|
|
ALfloat pf, r;
|
|
ALint j_s;
|
|
|
|
for(i = 0;i < dstlen;i++)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
pi = frac >> FRAC_PHASE_BITDIFF;
|
|
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
fil = state->coeffs[pi].filter;
|
|
scd = state->coeffs[pi].scDelta;
|
|
phd = state->coeffs[pi].phDelta;
|
|
spd = state->coeffs[pi].spDelta;
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
r = 0.0f;
|
|
for(j_f = 0,j_s = l;j_f < m;j_f++,j_s++)
|
|
r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) *
|
|
src[j_s];
|
|
dst[i] = r;
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
void ALfilterState_processC(ALfilterState *filter, ALfloat *restrict dst, const ALfloat *src, ALuint numsamples)
|
|
{
|
|
ALuint i;
|
|
for(i = 0;i < numsamples;i++)
|
|
*(dst++) = ALfilterState_processSingle(filter, *(src++));
|
|
}
|
|
|
|
|
|
static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
|
|
const ALuint IrSize,
|
|
ALfloat (*restrict Coeffs)[2],
|
|
const ALfloat (*restrict CoeffStep)[2],
|
|
ALfloat left, ALfloat right)
|
|
{
|
|
ALuint c;
|
|
for(c = 0;c < IrSize;c++)
|
|
{
|
|
const ALuint off = (Offset+c)&HRIR_MASK;
|
|
Values[off][0] += Coeffs[c][0] * left;
|
|
Values[off][1] += Coeffs[c][1] * right;
|
|
Coeffs[c][0] += CoeffStep[c][0];
|
|
Coeffs[c][1] += CoeffStep[c][1];
|
|
}
|
|
}
|
|
|
|
static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
|
|
const ALuint IrSize,
|
|
ALfloat (*restrict Coeffs)[2],
|
|
ALfloat left, ALfloat right)
|
|
{
|
|
ALuint c;
|
|
for(c = 0;c < IrSize;c++)
|
|
{
|
|
const ALuint off = (Offset+c)&HRIR_MASK;
|
|
Values[off][0] += Coeffs[c][0] * left;
|
|
Values[off][1] += Coeffs[c][1] * right;
|
|
}
|
|
}
|
|
|
|
#define MixHrtf MixHrtf_C
|
|
#include "mixer_inc.c"
|
|
#undef MixHrtf
|
|
|
|
|
|
void Mix_C(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
|
|
MixGains *Gains, ALuint Counter, ALuint OutPos, ALuint BufferSize)
|
|
{
|
|
ALfloat gain, step;
|
|
ALuint c;
|
|
|
|
for(c = 0;c < OutChans;c++)
|
|
{
|
|
ALuint pos = 0;
|
|
gain = Gains[c].Current;
|
|
step = Gains[c].Step;
|
|
if(step != 0.0f && Counter > 0)
|
|
{
|
|
ALuint minsize = minu(BufferSize, Counter);
|
|
for(;pos < minsize;pos++)
|
|
{
|
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
|
gain += step;
|
|
}
|
|
if(pos == Counter)
|
|
gain = Gains[c].Target;
|
|
Gains[c].Current = gain;
|
|
}
|
|
|
|
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
|
}
|
|
}
|
|
|
|
/* Basically the inverse of the above. Rather than one input going to multiple
|
|
* outputs (each with its own gain), it's multiple inputs (each with its own
|
|
* gain) going to one output. This applies one row (vs one column) of a matrix
|
|
* transform. And as the matrices are more or less static once set up, no
|
|
* stepping is necessary.
|
|
*/
|
|
void MixRow_C(ALfloat *OutBuffer, const ALfloat *Mtx, ALfloat (*restrict data)[BUFFERSIZE], ALuint InChans, ALuint BufferSize)
|
|
{
|
|
ALuint c, i;
|
|
|
|
for(c = 0;c < InChans;c++)
|
|
{
|
|
ALfloat gain = Mtx[c];
|
|
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
for(i = 0;i < BufferSize;i++)
|
|
OutBuffer[i] += data[c][i] * gain;
|
|
}
|
|
}
|