openal-soft/Alc/mixer/mixer_sse.c
2018-10-29 11:32:50 -07:00

251 lines
8.4 KiB
C

#include "config.h"
#include <xmmintrin.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "alSource.h"
#include "alAuxEffectSlot.h"
#include "defs.h"
const ALfloat *Resample_bsinc_SSE(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
ALsizei dstlen)
{
const ALfloat *const filter = state->bsinc.filter;
const __m128 sf4 = _mm_set1_ps(state->bsinc.sf);
const ALsizei m = state->bsinc.m;
const __m128 *fil, *scd, *phd, *spd;
ALsizei pi, i, j, offset;
ALfloat pf;
__m128 r4;
ASSUME(m > 0);
ASSUME(dstlen > 0);
src -= state->bsinc.l;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
offset = m*pi*4;
fil = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
scd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
phd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16); offset += m;
spd = (const __m128*)ASSUME_ALIGNED(filter + offset, 16);
// Apply the scale and phase interpolated filter.
r4 = _mm_setzero_ps();
{
const ALsizei count = m >> 2;
const __m128 pf4 = _mm_set1_ps(pf);
ASSUME(count > 0);
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
for(j = 0;j < count;j++)
{
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const __m128 f4 = MLA4(
MLA4(fil[j], sf4, scd[j]),
pf4, MLA4(phd[j], sf4, spd[j])
);
/* r += f*src */
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4]));
}
#undef MLA4
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
dst[i] = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*RESTRICT Values)[2],
const ALsizei IrSize,
const ALfloat (*RESTRICT Coeffs)[2],
ALfloat left, ALfloat right)
{
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
__m128 vals = _mm_setzero_ps();
__m128 coeffs;
ALsizei i;
Values = ASSUME_ALIGNED(Values, 16);
Coeffs = ASSUME_ALIGNED(Coeffs, 16);
if((Offset&1))
{
const ALsizei o0 = Offset&HRIR_MASK;
const ALsizei o1 = (Offset+IrSize-1)&HRIR_MASK;
__m128 imp0, imp1;
coeffs = _mm_load_ps(&Coeffs[0][0]);
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o0][0], vals);
for(i = 1;i < IrSize-1;i += 2)
{
const ALsizei o2 = (Offset+i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[o2][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[o2][0], vals);
imp0 = imp1;
}
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi((__m64*)&Values[o1][0], vals);
}
else
{
for(i = 0;i < IrSize;i += 2)
{
const ALsizei o = (Offset + i)&HRIR_MASK;
coeffs = _mm_load_ps(&Coeffs[i][0]);
vals = _mm_load_ps(&Values[o][0]);
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
_mm_store_ps(&Values[o][0], vals);
}
}
}
#define MixHrtf MixHrtf_SSE
#define MixHrtfBlend MixHrtfBlend_SSE
#define MixDirectHrtf MixDirectHrtf_SSE
#include "hrtf_inc.c"
void Mix_SSE(const ALfloat *data, ALsizei OutChans, ALfloat (*RESTRICT OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
ALsizei BufferSize)
{
const ALfloat delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
ALsizei c;
ASSUME(OutChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < OutChans;c++)
{
ALsizei pos = 0;
ALfloat gain = CurrentGains[c];
const ALfloat diff = TargetGains[c] - gain;
if(fabsf(diff) > FLT_EPSILON)
{
ALsizei minsize = mini(BufferSize, Counter);
const ALfloat step = diff * delta;
ALfloat step_count = 0.0f;
/* Mix with applying gain steps in aligned multiples of 4. */
if(LIKELY(minsize > 3))
{
const __m128 four4 = _mm_set1_ps(4.0f);
const __m128 step4 = _mm_set1_ps(step);
const __m128 gain4 = _mm_set1_ps(gain);
__m128 step_count4 = _mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f);
ALsizei todo = minsize >> 2;
do {
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
/* dry += val * (gain + step*step_count) */
dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
#undef MLA4
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
step_count4 = _mm_add_ps(step_count4, four4);
pos += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after
* the last four mixed samples, so the lowest element
* represents the next step count to apply.
*/
step_count = _mm_cvtss_f32(step_count4);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos]*(gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGains[c];
else
gain += step*step_count;
CurrentGains[c] = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = mini(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(LIKELY(BufferSize-pos > 3))
{
ALsizei todo = (BufferSize-pos) >> 2;
const __m128 gain4 = _mm_set1_ps(gain);
do {
const __m128 val4 = _mm_load_ps(&data[pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}
void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*RESTRICT data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
ALsizei c;
ASSUME(InChans > 0);
ASSUME(BufferSize > 0);
for(c = 0;c < InChans;c++)
{
ALsizei pos = 0;
const ALfloat gain = Gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(LIKELY(BufferSize > 3))
{
ALsizei todo = BufferSize >> 2;
const __m128 gain4 = _mm_set1_ps(gain);
do {
const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]);
__m128 dry4 = _mm_load_ps(&OutBuffer[pos]);
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&OutBuffer[pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
OutBuffer[pos] += data[c][InPos+pos]*gain;
}
}