2007-12-06 22:49:23 -08:00

678 lines
28 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
#include "config.h"
#include <math.h>
#include "alMain.h"
#include "AL/al.h"
#include "AL/alc.h"
#if defined(HAVE_STDINT_H)
#include <stdint.h>
typedef int64_t ALint64;
#elif defined(HAVE___INT64)
typedef __int64 ALint64;
#elif (SIZEOF_LONG == 8)
typedef long ALint64;
#elif (SIZEOF_LONG_LONG == 8)
typedef long long ALint64;
#endif
#ifdef HAVE_SQRTF
#define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
#else
#define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
#endif
// fixes for mingw32.
#if defined(max) && !defined(__max)
#define __max max
#endif
#if defined(min) && !defined(__min)
#define __min min
#endif
__inline ALuint aluBytesFromFormat(ALenum format)
{
switch(format)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_STEREO8:
case AL_FORMAT_QUAD8:
return 1;
case AL_FORMAT_MONO16:
case AL_FORMAT_STEREO16:
case AL_FORMAT_QUAD16:
return 2;
default:
return 0;
}
}
__inline ALuint aluChannelsFromFormat(ALenum format)
{
switch(format)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_MONO16:
return 1;
case AL_FORMAT_STEREO8:
case AL_FORMAT_STEREO16:
return 2;
case AL_FORMAT_QUAD8:
case AL_FORMAT_QUAD16:
return 4;
default:
return 0;
}
}
static __inline ALint aluF2L(ALfloat Value)
{
if(sizeof(ALint) == 4 && sizeof(double) == 8)
{
double temp;
temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
return *((ALint*)&temp);
}
return (ALint)Value;
}
static __inline ALshort aluF2S(ALfloat Value)
{
ALint i;
i = aluF2L(Value);
i = __min( 32767, i);
i = __max(-32768, i);
return ((ALshort)i);
}
static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
static __inline ALvoid aluNormalize(ALfloat *inVector)
{
ALfloat length, inverse_length;
length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
if(length != 0)
{
inverse_length = 1.0f/length;
inVector[0] *= inverse_length;
inVector[1] *= inverse_length;
inVector[2] *= inverse_length;
}
}
static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
{
ALfloat result[3];
result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
memcpy(vector, result, sizeof(result));
}
static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
ALenum isMono, ALenum OutputFormat,
ALfloat *drysend, ALfloat *wetsend,
ALfloat *pitch)
{
ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3];
ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix;
ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3];
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
ALfloat U[3],V[3],N[3];
ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
ALfloat flVSS, flVLS;
ALint DistanceModel;
ALfloat Matrix[3][3];
ALint HeadRelative;
ALfloat flAttenuation;
//Get context properties
DopplerFactor = ALContext->DopplerFactor;
DistanceModel = ALContext->DistanceModel;
DopplerVelocity = ALContext->DopplerVelocity;
flSpeedOfSound = ALContext->flSpeedOfSound;
//Get listener properties
ListenerGain = ALContext->Listener.Gain;
memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position));
memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward));
memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up));
//Get source properties
Pitch = ALSource->flPitch;
SourceVolume = ALSource->flGain;
memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
MinVolume = ALSource->flMinGain;
MaxVolume = ALSource->flMaxGain;
MinDist = ALSource->flRefDistance;
MaxDist = ALSource->flMaxDistance;
Rolloff = ALSource->flRollOffFactor;
OuterGain = ALSource->flOuterGain;
InnerAngle = ALSource->flInnerAngle;
OuterAngle = ALSource->flOuterAngle;
HeadRelative = ALSource->bHeadRelative;
//Set working variables
DryMix = (ALfloat)(1.0f);
WetMix = (ALfloat)(0.0f);
//Only apply 3D calculations for mono buffers
if(isMono != AL_FALSE)
{
//1. Translate Listener to origin (convert to head relative)
if(HeadRelative==AL_FALSE)
{
Position[0] -= ListenerPosition[0];
Position[1] -= ListenerPosition[1];
Position[2] -= ListenerPosition[2];
}
//2. Calculate distance attenuation
Distance = aluSqrt(aluDotproduct(Position, Position));
flAttenuation = 1.0f;
switch (DistanceModel)
{
case AL_INVERSE_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_INVERSE_DISTANCE:
if (MinDist > 0.0f)
{
if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
}
break;
case AL_LINEAR_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_LINEAR_DISTANCE:
Distance=__min(Distance,MaxDist);
if (MaxDist != MinDist)
flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
break;
case AL_EXPONENT_DISTANCE_CLAMPED:
Distance=__max(Distance,MinDist);
Distance=__min(Distance,MaxDist);
if (MaxDist < MinDist)
break;
//fall-through
case AL_EXPONENT_DISTANCE:
if ((Distance > 0.0f) && (MinDist > 0.0f))
flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
break;
case AL_NONE:
default:
flAttenuation = 1.0f;
break;
}
// Source Gain + Attenuation
DryMix = SourceVolume * flAttenuation;
// Clamp to Min/Max Gain
DryMix = __min(DryMix,MaxVolume);
DryMix = __max(DryMix,MinVolume);
WetMix = __min(WetMix,MaxVolume);
WetMix = __max(WetMix,MinVolume);
//3. Apply directional soundcones
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
aluNormalize(Direction);
aluNormalize(SourceToListener);
Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f);
if(Angle >= InnerAngle && Angle <= OuterAngle)
ConeVolume = (1.0f+(OuterGain-1.0f)*(Angle-InnerAngle)/(OuterAngle-InnerAngle));
else if(Angle > OuterAngle)
ConeVolume = (1.0f+(OuterGain-1.0f) );
else
ConeVolume = 1.0f;
//4. Calculate Velocity
if(DopplerFactor != 0.0f)
{
flVLS = aluDotproduct(ListenerVelocity, SourceToListener);
flVSS = aluDotproduct(Velocity, SourceToListener);
flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
if (flVSS >= flMaxVelocity)
flVSS = (flMaxVelocity - 1.0f);
else if (flVSS <= -flMaxVelocity)
flVSS = -flMaxVelocity + 1.0f;
if (flVLS >= flMaxVelocity)
flVLS = (flMaxVelocity - 1.0f);
else if (flVLS <= -flMaxVelocity)
flVLS = -flMaxVelocity + 1.0f;
pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
}
else
pitch[0] = Pitch;
//5. Align coordinate system axes
aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector
aluNormalize(U); // Normalized Right-vector
memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector
aluNormalize(V); // Normalized Up-vector
memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector
aluNormalize(N); // Normalized At-vector
Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
aluMatrixVector(Position, Matrix);
//6. Convert normalized position into left/right front/back pannings
if(Distance != 0.0f)
{
aluNormalize(Position);
PanningLR = 0.5f + 0.5f*Position[0];
PanningFB = 0.5f + 0.5f*Position[2];
}
else
{
PanningLR = 0.5f;
PanningFB = 0.5f;
}
//7. Convert pannings into channel volumes
switch(OutputFormat)
{
case AL_FORMAT_MONO8:
case AL_FORMAT_MONO16:
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
wetsend[1] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
break;
case AL_FORMAT_STEREO8:
case AL_FORMAT_STEREO16:
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
wetsend[0] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
wetsend[1] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
break;
case AL_FORMAT_QUAD8:
case AL_FORMAT_QUAD16:
drysend[0] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Direct
drysend[1] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Direct
drysend[2] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Direct
drysend[3] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Direct
wetsend[0] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Room
wetsend[1] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Room
wetsend[2] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Room
wetsend[3] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Room
break;
default:
break;
}
}
else
{
//1. Multi-channel buffers always play "normal"
drysend[0] = SourceVolume * 1.0f * ListenerGain;
drysend[1] = SourceVolume * 1.0f * ListenerGain;
drysend[2] = SourceVolume * 1.0f * ListenerGain;
drysend[3] = SourceVolume * 1.0f * ListenerGain;
wetsend[0] = SourceVolume * 0.0f * ListenerGain;
wetsend[1] = SourceVolume * 0.0f * ListenerGain;
wetsend[2] = SourceVolume * 0.0f * ListenerGain;
wetsend[3] = SourceVolume * 0.0f * ListenerGain;
pitch[0] = Pitch;
}
}
ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
{
static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f };
ALuint BlockAlign,BufferSize;
ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
ALuint Channels,Bits,Frequency,ulExtraSamples;
ALfloat Pitch;
ALint Looping,increment,State;
ALuint Buffer,fraction;
ALuint SamplesToDo;
ALsource *ALSource;
ALbuffer *ALBuffer;
ALfloat value;
ALshort *Data;
ALuint i,j,k;
ALbufferlistitem *BufferListItem;
ALuint loop;
ALint64 DataSize64,DataPos64;
SuspendContext(ALContext);
if(buffer)
{
//Figure output format variables
BlockAlign = aluChannelsFromFormat(format);
BlockAlign *= aluBytesFromFormat(format);
size /= BlockAlign;
while(size > 0)
{
//Setup variables
ALSource = (ALContext ? ALContext->Source : NULL);
SamplesToDo = min(size, BUFFERSIZE);
//Clear mixing buffer
memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
//Actual mixing loop
while(ALSource)
{
j = 0;
State = ALSource->state;
while(State == AL_PLAYING && j < SamplesToDo)
{
DataSize = 0;
DataPosInt = 0;
DataPosFrac = 0;
//Get buffer info
if((Buffer = ALSource->ulBufferID))
{
ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
Data = ALBuffer->data;
Bits = aluBytesFromFormat(ALBuffer->format) * 8;
Channels = aluChannelsFromFormat(ALBuffer->format);
DataSize = ALBuffer->size;
Frequency = ALBuffer->frequency;
CalcSourceParams(ALContext, ALSource,
(Channels==1) ? AL_TRUE : AL_FALSE,
format, DrySend, WetSend, &Pitch);
Pitch = (Pitch*Frequency) / ALContext->Frequency;
DataSize = DataSize / (Bits*Channels/8);
//Get source info
DataPosInt = ALSource->position;
DataPosFrac = ALSource->position_fraction;
//Compute 18.14 fixed point step
increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
if(increment > (MAX_PITCH<<FRACTIONBITS))
increment = (MAX_PITCH<<FRACTIONBITS);
//Figure out how many samples we can mix.
//Pitch must be <= 4 (the number below !)
DataSize64 = DataSize+MAX_PITCH;
DataSize64 <<= FRACTIONBITS;
DataPos64 = DataPosInt;
DataPos64 <<= FRACTIONBITS;
DataPos64 += DataPosFrac;
BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
BufferListItem = ALSource->queue;
for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
{
if(BufferListItem)
BufferListItem = BufferListItem->next;
}
if (BufferListItem)
{
if (BufferListItem->next)
{
if(BufferListItem->next->buffer &&
((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
{
ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
}
}
else if (ALSource->bLooping)
{
if (ALSource->queue->buffer)
{
if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
{
ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
}
}
}
}
BufferSize = min(BufferSize, (SamplesToDo-j));
//Actual sample mixing loop
Data += DataPosInt*Channels;
while(BufferSize--)
{
k = DataPosFrac>>FRACTIONBITS;
fraction = DataPosFrac&FRACTIONMASK;
if(Channels==1)
{
//First order interpolator
value = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
//Direct path final mix buffer and panning
DryBuffer[j][0] += value*DrySend[0];
DryBuffer[j][1] += value*DrySend[1];
DryBuffer[j][2] += value*DrySend[2];
DryBuffer[j][3] += value*DrySend[3];
//Room path final mix buffer and panning
WetBuffer[j][0] += value*WetSend[0];
WetBuffer[j][1] += value*WetSend[1];
WetBuffer[j][2] += value*WetSend[2];
WetBuffer[j][3] += value*WetSend[3];
}
else
{
//First order interpolator (left)
value = (ALfloat)((ALshort)(((Data[k*2 ]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+2]*(fraction)))>>FRACTIONBITS));
//Direct path final mix buffer and panning (left)
DryBuffer[j][0] += value*DrySend[0];
//Room path final mix buffer and panning (left)
WetBuffer[j][0] += value*WetSend[0];
//First order interpolator (right)
value = (ALfloat)((ALshort)(((Data[k*2+1]*((1L<<FRACTIONBITS)-fraction))+(Data[k*2+3]*(fraction)))>>FRACTIONBITS));
//Direct path final mix buffer and panning (right)
DryBuffer[j][1] += value*DrySend[1];
//Room path final mix buffer and panning (right)
WetBuffer[j][1] += value*WetSend[1];
}
DataPosFrac += increment;
j++;
}
DataPosInt += (DataPosFrac>>FRACTIONBITS);
DataPosFrac = (DataPosFrac&FRACTIONMASK);
//Update source info
ALSource->position = DataPosInt;
ALSource->position_fraction = DataPosFrac;
}
//Handle looping sources
if(!Buffer || DataPosInt >= DataSize)
{
//queueing
if(ALSource->queue)
{
Looping = ALSource->bLooping;
if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
{
BufferListItem = ALSource->queue;
for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
{
if(BufferListItem)
{
if(!Looping)
BufferListItem->bufferstate = PROCESSED;
BufferListItem = BufferListItem->next;
}
}
if(!Looping)
ALSource->BuffersProcessed++;
if(BufferListItem)
ALSource->ulBufferID = BufferListItem->buffer;
ALSource->position = DataPosInt-DataSize;
ALSource->position_fraction = DataPosFrac;
ALSource->BuffersPlayed++;
}
else
{
if(!Looping)
{
/* alSourceStop */
ALSource->state = AL_STOPPED;
ALSource->inuse = AL_FALSE;
ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
BufferListItem = ALSource->queue;
while(BufferListItem != NULL)
{
BufferListItem->bufferstate = PROCESSED;
BufferListItem = BufferListItem->next;
}
}
else
{
/* alSourceRewind */
/* alSourcePlay */
ALSource->state = AL_PLAYING;
ALSource->inuse = AL_TRUE;
ALSource->play = AL_TRUE;
ALSource->BuffersPlayed = 0;
ALSource->BufferPosition = 0;
ALSource->lBytesPlayed = 0;
ALSource->BuffersProcessed = 0;
BufferListItem = ALSource->queue;
while(BufferListItem != NULL)
{
BufferListItem->bufferstate = PENDING;
BufferListItem = BufferListItem->next;
}
ALSource->ulBufferID = ALSource->queue->buffer;
ALSource->position = DataPosInt-DataSize;
ALSource->position_fraction = DataPosFrac;
}
}
}
}
//Get source state
State = ALSource->state;
}
ALSource = ALSource->next;
}
//Post processing loop
switch(format)
{
case AL_FORMAT_MONO8:
for(i = 0;i < SamplesToDo;i++)
{
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1])>>8)+128);
buffer = ((ALubyte*)buffer) + 1;
}
break;
case AL_FORMAT_STEREO8:
for(i = 0;i < SamplesToDo*2;i++)
{
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1])>>8)+128);
buffer = ((ALubyte*)buffer) + 1;
}
break;
case AL_FORMAT_QUAD8:
for(i = 0;i < SamplesToDo*4;i++)
{
*((ALubyte*)buffer) = (ALubyte)((aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3])>>8)+128);
buffer = ((ALubyte*)buffer) + 1;
}
break;
case AL_FORMAT_MONO16:
for(i = 0;i < SamplesToDo;i++)
{
*((ALshort*)buffer) = aluF2S(DryBuffer[i][0]+DryBuffer[i][1]+WetBuffer[i][0]+WetBuffer[i][1]);
buffer = ((ALshort*)buffer) + 1;
}
break;
case AL_FORMAT_STEREO16:
default:
for(i = 0;i < SamplesToDo*2;i++)
{
*((ALshort*)buffer) = aluF2S(DryBuffer[i>>1][i&1]+WetBuffer[i>>1][i&1]);
buffer = ((ALshort*)buffer) + 1;
}
break;
case AL_FORMAT_QUAD16:
for(i = 0;i < SamplesToDo*4;i++)
{
*((ALshort*)buffer) = aluF2S(DryBuffer[i>>2][i&3]+WetBuffer[i>>2][i&3]);
buffer = ((ALshort*)buffer) + 1;
}
break;
}
size -= SamplesToDo;
}
}
ProcessContext(ALContext);
}