Chris Robinson 55f851093f Remove the now-unneeded click removal buffers for the device
They are still there for auxiliary sends. However, they should go away soon
enough too, and then we won't have to mess around with calculating extra
"predictive" samples in the mixer.
2014-03-23 07:31:33 -07:00

216 lines
6.1 KiB
C

#ifndef _ALU_H_
#define _ALU_H_
#include <limits.h>
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "alMain.h"
#include "alBuffer.h"
#include "alFilter.h"
#include "hrtf.h"
#define F_PI (3.14159265358979323846f)
#define F_PI_2 (1.57079632679489661923f)
#define F_2PI (6.28318530717958647692f)
#ifndef FLT_EPSILON
#define FLT_EPSILON (1.19209290e-07f)
#endif
#define DEG2RAD(x) ((ALfloat)(x) * (F_PI/180.0f))
#define RAD2DEG(x) ((ALfloat)(x) * (180.0f/F_PI))
#define SRC_HISTORY_BITS (6)
#define SRC_HISTORY_LENGTH (1<<SRC_HISTORY_BITS)
#define SRC_HISTORY_MASK (SRC_HISTORY_LENGTH-1)
#ifdef __cplusplus
extern "C" {
#endif
typedef struct HrtfState {
ALIGN(16) ALfloat History[MAX_INPUT_CHANNELS][SRC_HISTORY_LENGTH];
ALIGN(16) ALfloat Values[MAX_INPUT_CHANNELS][HRIR_LENGTH][2];
} HrtfState;
typedef struct HrtfParams {
ALfloat Gain;
ALfloat Dir[3];
ALIGN(16) ALfloat Coeffs[MAX_INPUT_CHANNELS][HRIR_LENGTH][2];
ALIGN(16) ALfloat CoeffStep[HRIR_LENGTH][2];
ALuint Delay[MAX_INPUT_CHANNELS][2];
ALint DelayStep[2];
ALuint IrSize;
} HrtfParams;
typedef struct DirectParams {
ALfloat (*OutBuffer)[BUFFERSIZE];
union {
struct {
HrtfParams Params;
HrtfState State;
} Hrtf;
/* A mixing matrix. First subscript is the channel number of the input
* data (regardless of channel configuration) and the second is the
* channel target (eg. FrontLeft). Not used with HRTF. */
struct {
ALfloat Current[MAX_INPUT_CHANNELS][MaxChannels];
ALfloat Step[MAX_INPUT_CHANNELS][MaxChannels];
ALfloat Target[MAX_INPUT_CHANNELS][MaxChannels];
} Gains;
} Mix;
/* If not 'moving', gain/coefficients are set directly without fading. */
ALboolean Moving;
/* Stepping counter for gain/coefficient fading. */
ALuint Counter;
/* History/coefficient offset. */
ALuint Offset;
ALfilterState LpFilter[MAX_INPUT_CHANNELS];
} DirectParams;
typedef struct SendParams {
ALfloat (*OutBuffer)[BUFFERSIZE];
ALfloat *ClickRemoval;
ALfloat *PendingClicks;
/* Gain control, which applies to all input channels to a single (mono)
* output buffer. */
ALfloat Gain;
ALfilterState LpFilter[MAX_INPUT_CHANNELS];
} SendParams;
typedef void (*ResamplerFunc)(const ALfloat *src, ALuint frac, ALuint increment,
ALfloat *restrict dst, ALuint dstlen);
typedef ALvoid (*DryMixerFunc)(struct DirectParams *params,
const ALfloat *restrict data, ALuint srcchan,
ALuint OutPos, ALuint BufferSize);
typedef ALvoid (*WetMixerFunc)(struct SendParams *params,
const ALfloat *restrict data,
ALuint OutPos, ALuint SamplesToDo,
ALuint BufferSize);
#define GAIN_SILENCE_THRESHOLD (0.00001f)
#define SPEEDOFSOUNDMETRESPERSEC (343.3f)
#define AIRABSORBGAINHF (0.99426f) /* -0.05dB */
#define FRACTIONBITS (14)
#define FRACTIONONE (1<<FRACTIONBITS)
#define FRACTIONMASK (FRACTIONONE-1)
inline ALfloat minf(ALfloat a, ALfloat b)
{ return ((a > b) ? b : a); }
inline ALfloat maxf(ALfloat a, ALfloat b)
{ return ((a > b) ? a : b); }
inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
{ return minf(max, maxf(min, val)); }
inline ALdouble mind(ALdouble a, ALdouble b)
{ return ((a > b) ? b : a); }
inline ALdouble maxd(ALdouble a, ALdouble b)
{ return ((a > b) ? a : b); }
inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max)
{ return mind(max, maxd(min, val)); }
inline ALuint minu(ALuint a, ALuint b)
{ return ((a > b) ? b : a); }
inline ALuint maxu(ALuint a, ALuint b)
{ return ((a > b) ? a : b); }
inline ALuint clampu(ALuint val, ALuint min, ALuint max)
{ return minu(max, maxu(min, val)); }
inline ALint mini(ALint a, ALint b)
{ return ((a > b) ? b : a); }
inline ALint maxi(ALint a, ALint b)
{ return ((a > b) ? a : b); }
inline ALint clampi(ALint val, ALint min, ALint max)
{ return mini(max, maxi(min, val)); }
inline ALint64 mini64(ALint64 a, ALint64 b)
{ return ((a > b) ? b : a); }
inline ALint64 maxi64(ALint64 a, ALint64 b)
{ return ((a > b) ? a : b); }
inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
{ return mini64(max, maxi64(min, val)); }
inline ALuint64 minu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? b : a); }
inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
{ return ((a > b) ? a : b); }
inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
{ return minu64(max, maxu64(min, val)); }
inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
{
return val1 + (val2-val1)*mu;
}
inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
{
ALfloat mu2 = mu*mu;
ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
ALfloat a2 = -0.5f*val0 + 0.5f*val2;
ALfloat a3 = val1;
return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
}
ALvoid aluInitPanning(ALCdevice *Device);
/**
* ComputeAngleGains
*
* Sets channel gains based on a given source's angle and its half-width. The
* angle and hwidth parameters are in radians.
*/
void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat gains[MaxChannels]);
/**
* SetGains
*
* Helper to set the appropriate channels to the specified gain.
*/
inline void SetGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MaxChannels])
{
ComputeAngleGains(device, 0.0f, F_PI, ingain, gains);
}
ALvoid CalcSourceParams(struct ALactivesource *src, const ALCcontext *ALContext);
ALvoid CalcNonAttnSourceParams(struct ALactivesource *src, const ALCcontext *ALContext);
ALvoid MixSource(struct ALactivesource *src, ALCdevice *Device, ALuint SamplesToDo);
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
/* Caller must lock the device. */
ALvoid aluHandleDisconnect(ALCdevice *device);
extern ALfloat ConeScale;
extern ALfloat ZScale;
#ifdef __cplusplus
}
#endif
#endif