openal-soft/Alc/mixer_neon.c
Chris Robinson 444e9563b3 Add a mixing function to blend HRIRs
This is a bit more efficient than calling the normal HRTF mixing function
twice, and helps solve the problem of the values generated from convolution not
being consistent with the new HRIR.
2017-05-03 03:29:21 -07:00

332 lines
11 KiB
C

#include "config.h"
#include <arm_neon.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "hrtf.h"
#include "mixer_defs.h"
const ALfloat *Resample_lerp32_Neon(const InterpState* UNUSED(state),
const ALfloat *restrict src, ALsizei frac, ALint increment,
ALfloat *restrict dst, ALsizei numsamples)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
alignas(16) ALint pos_[4];
alignas(16) ALsizei frac_[4];
int32x4_t pos4;
int32x4_t frac4;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_s32(frac_);
pos4 = vld1q_s32(pos_);
for(i = 0;numsamples-i > 3;i += 4)
{
const float32x4_t val1 = (float32x4_t){src[pos_[0]], src[pos_[1]], src[pos_[2]], src[pos_[3]]};
const float32x4_t val2 = (float32x4_t){src[pos_[0]+1], src[pos_[1]+1], src[pos_[2]+1], src[pos_[3]+1]};
/* val1 + (val2-val1)*mu */
const float32x4_t r0 = vsubq_f32(val2, val1);
const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
const float32x4_t out = vmlaq_f32(val1, mu, r0);
vst1q_f32(&dst[i], out);
frac4 = vaddq_s32(frac4, increment4);
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
frac4 = vandq_s32(frac4, fracMask4);
vst1q_s32(pos_, pos4);
}
if(i < numsamples)
{
/* NOTE: These four elements represent the position *after* the last
* four samples, so the lowest element is the next position to
* resample.
*/
ALint pos = pos_[0];
frac = vgetq_lane_s32(frac4, 0);
do {
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(++i < numsamples);
}
return dst;
}
const ALfloat *Resample_fir4_32_Neon(const InterpState* UNUSED(state),
const ALfloat *restrict src, ALsizei frac, ALint increment,
ALfloat *restrict dst, ALsizei numsamples)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
alignas(16) ALint pos_[4];
alignas(16) ALsizei frac_[4];
int32x4_t pos4;
int32x4_t frac4;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_s32(frac_);
pos4 = vld1q_s32(pos_);
--src;
for(i = 0;numsamples-i > 3;i += 4)
{
const float32x4_t val0 = vld1q_f32(&src[pos_[0]]);
const float32x4_t val1 = vld1q_f32(&src[pos_[1]]);
const float32x4_t val2 = vld1q_f32(&src[pos_[2]]);
const float32x4_t val3 = vld1q_f32(&src[pos_[3]]);
float32x4_t k0 = vld1q_f32(sinc4Tab[frac_[0]]);
float32x4_t k1 = vld1q_f32(sinc4Tab[frac_[1]]);
float32x4_t k2 = vld1q_f32(sinc4Tab[frac_[2]]);
float32x4_t k3 = vld1q_f32(sinc4Tab[frac_[3]]);
float32x4_t out;
k0 = vmulq_f32(k0, val0);
k1 = vmulq_f32(k1, val1);
k2 = vmulq_f32(k2, val2);
k3 = vmulq_f32(k3, val3);
k0 = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k1), vget_high_f32(k1)));
k2 = vcombine_f32(vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)),
vpadd_f32(vget_low_f32(k3), vget_high_f32(k3)));
out = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)));
vst1q_f32(&dst[i], out);
frac4 = vaddq_s32(frac4, increment4);
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
frac4 = vandq_s32(frac4, fracMask4);
vst1q_s32(pos_, pos4);
vst1q_s32(frac_, frac4);
}
if(i < numsamples)
{
/* NOTE: These four elements represent the position *after* the last
* four samples, so the lowest element is the next position to
* resample.
*/
ALint pos = pos_[0];
frac = frac_[0];
do {
dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(++i < numsamples);
}
return dst;
}
const ALfloat *Resample_bsinc32_Neon(const InterpState *state,
const ALfloat *restrict src, ALsizei frac, ALint increment,
ALfloat *restrict dst, ALsizei dstlen)
{
const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
const ALsizei m = state->bsinc.m;
const ALfloat *fil, *scd, *phd, *spd;
ALsizei pi, i, j;
float32x4_t r4;
ALfloat pf;
src += state->bsinc.l;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
fil = ASSUME_ALIGNED(state->bsinc.coeffs[pi].filter, 16);
scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16);
phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16);
spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16);
// Apply the scale and phase interpolated filter.
r4 = vdupq_n_f32(0.0f);
{
const float32x4_t pf4 = vdupq_n_f32(pf);
for(j = 0;j < m;j+=4)
{
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const float32x4_t f4 = vmlaq_f32(vmlaq_f32(vld1q_f32(&fil[j]),
sf4, vld1q_f32(&scd[j])),
pf4, vmlaq_f32(vld1q_f32(&phd[j]),
sf4, vld1q_f32(&spd[j])
)
);
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
}
}
r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
vrev64_f32(vget_low_f32(r4))));
dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
const ALsizei IrSize,
const ALfloat (*restrict Coeffs)[2],
ALfloat left, ALfloat right)
{
ALsizei c;
float32x4_t leftright4;
{
float32x2_t leftright2 = vdup_n_f32(0.0);
leftright2 = vset_lane_f32(left, leftright2, 0);
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
Values = ASSUME_ALIGNED(Values, 16);
Coeffs = ASSUME_ALIGNED(Coeffs, 16);
for(c = 0;c < IrSize;c += 2)
{
const ALsizei o0 = (Offset+c)&HRIR_MASK;
const ALsizei o1 = (o0+1)&HRIR_MASK;
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
vld1_f32((float32_t*)&Values[o1][0]));
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
}
}
#define MixHrtf MixHrtf_Neon
#define MixHrtfBlend MixHrtfBlend_Neon
#define MixDirectHrtf MixDirectHrtf_Neon
#include "mixer_inc.c"
#undef MixHrtf
void Mix_Neon(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
ALsizei BufferSize)
{
ALfloat gain, delta, step;
float32x4_t gain4;
ALsizei c;
data = ASSUME_ALIGNED(data, 16);
OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
for(c = 0;c < OutChans;c++)
{
ALsizei pos = 0;
gain = CurrentGains[c];
step = (TargetGains[c] - gain) * delta;
if(fabsf(step) > FLT_EPSILON)
{
ALsizei minsize = mini(BufferSize, Counter);
/* Mix with applying gain steps in aligned multiples of 4. */
if(minsize-pos > 3)
{
float32x4_t step4;
gain4 = vsetq_lane_f32(gain, gain4, 0);
gain4 = vsetq_lane_f32(gain + step, gain4, 1);
gain4 = vsetq_lane_f32(gain + step + step, gain4, 2);
gain4 = vsetq_lane_f32(gain + step + step + step, gain4, 3);
step4 = vdupq_n_f32(step + step + step + step);
do {
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
gain4 = vaddq_f32(gain4, step4);
vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
pos += 4;
} while(minsize-pos > 3);
/* NOTE: gain4 now represents the next four gains after the
* last four mixed samples, so the lowest element represents
* the next gain to apply.
*/
gain = vgetq_lane_f32(gain4, 0);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
OutBuffer[c][OutPos+pos] += data[pos]*gain;
gain += step;
}
if(pos == Counter)
gain = TargetGains[c];
CurrentGains[c] = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = mini(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
gain4 = vdupq_n_f32(gain);
for(;BufferSize-pos > 3;pos += 4)
{
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[c][OutPos+pos] += data[pos]*gain;
}
}
void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
{
float32x4_t gain4;
ALsizei c;
data = ASSUME_ALIGNED(data, 16);
OutBuffer = ASSUME_ALIGNED(OutBuffer, 16);
for(c = 0;c < InChans;c++)
{
ALsizei pos = 0;
ALfloat gain = Gains[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
gain4 = vdupq_n_f32(gain);
for(;BufferSize-pos > 3;pos += 4)
{
const float32x4_t val4 = vld1q_f32(&data[c][InPos+pos]);
float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(&OutBuffer[pos], dry4);
}
for(;pos < BufferSize;pos++)
OutBuffer[pos] += data[c][InPos+pos]*gain;
}
}