openal-soft/Alc/mixer/mixer_neon.cpp
Chris Robinson cc91490b61 Use a temporary buffer for HRTF filter accumulation
Similar to the history buffer, to avoid using the state buffer as a ring
buffer.
2019-03-29 11:33:04 -07:00

310 lines
11 KiB
C++

#include "config.h"
#include <arm_neon.h>
#include <limits>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alu.h"
#include "hrtf.h"
#include "defs.h"
#include "hrtfbase.h"
template<>
const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState* UNUSED(state),
const ALfloat *RESTRICT src, ALsizei frac, ALint increment,
ALfloat *RESTRICT dst, ALsizei dstlen)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
alignas(16) ALsizei pos_[4], frac_[4];
int32x4_t pos4, frac4;
ALsizei todo, pos, i;
ASSUME(frac >= 0);
ASSUME(increment > 0);
ASSUME(dstlen > 0);
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_s32(frac_);
pos4 = vld1q_s32(pos_);
todo = dstlen & ~3;
for(i = 0;i < todo;i += 4)
{
const int pos0 = vgetq_lane_s32(pos4, 0);
const int pos1 = vgetq_lane_s32(pos4, 1);
const int pos2 = vgetq_lane_s32(pos4, 2);
const int pos3 = vgetq_lane_s32(pos4, 3);
const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]};
const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]};
/* val1 + (val2-val1)*mu */
const float32x4_t r0 = vsubq_f32(val2, val1);
const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
const float32x4_t out = vmlaq_f32(val1, mu, r0);
vst1q_f32(&dst[i], out);
frac4 = vaddq_s32(frac4, increment4);
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
frac4 = vandq_s32(frac4, fracMask4);
}
/* NOTE: These four elements represent the position *after* the last four
* samples, so the lowest element is the next position to resample.
*/
pos = vgetq_lane_s32(pos4, 0);
frac = vgetq_lane_s32(frac4, 0);
for(;i < dstlen;++i)
{
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
template<>
const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src,
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
{
const ALfloat *const filter = state->bsinc.filter;
const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
const ALsizei m = state->bsinc.m;
const float32x4_t *fil, *scd, *phd, *spd;
ALsizei pi, i, j, offset;
float32x4_t r4;
ALfloat pf;
ASSUME(m > 0);
ASSUME(dstlen > 0);
ASSUME(increment > 0);
ASSUME(frac >= 0);
src -= state->bsinc.l;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
offset = m*pi*4;
fil = (const float32x4_t*)(filter + offset); offset += m;
scd = (const float32x4_t*)(filter + offset); offset += m;
phd = (const float32x4_t*)(filter + offset); offset += m;
spd = (const float32x4_t*)(filter + offset);
// Apply the scale and phase interpolated filter.
r4 = vdupq_n_f32(0.0f);
{
const ALsizei count = m >> 2;
const float32x4_t pf4 = vdupq_n_f32(pf);
ASSUME(count > 0);
for(j = 0;j < count;j++)
{
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const float32x4_t f4 = vmlaq_f32(
vmlaq_f32(fil[j], sf4, scd[j]),
pf4, vmlaq_f32(phd[j], sf4, spd[j])
);
/* r += f*src */
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4]));
}
}
r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
vrev64_f32(vget_low_f32(r4))));
dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize,
const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
{
ASSUME(IrSize >= 2);
float32x4_t leftright4;
{
float32x2_t leftright2 = vdup_n_f32(0.0);
leftright2 = vset_lane_f32(left, leftright2, 0);
leftright2 = vset_lane_f32(right, leftright2, 1);
leftright4 = vcombine_f32(leftright2, leftright2);
}
for(ALsizei c{0};c < IrSize;c += 2)
{
float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]),
vld1_f32((float32_t*)&Values[c+1][0]));
float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
vals = vmlaq_f32(vals, coefs, leftright4);
vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals));
vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals));
}
}
template<>
void MixHrtf_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
MixHrtfParams *hrtfparams, const ALsizei BufferSize)
{
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
BufferSize);
}
template<>
void MixHrtfBlend_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
newparams, BufferSize);
}
template<>
void MixDirectHrtf_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
const ALsizei NumChans, const ALsizei BufferSize)
{
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
BufferSize);
}
template<>
void Mix_<NEONTag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
const ALsizei BufferSize)
{
ASSUME(OutChans > 0);
ASSUME(BufferSize > 0);
const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f};
for(ALsizei c{0};c < OutChans;c++)
{
ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])};
ALsizei pos{0};
ALfloat gain{CurrentGains[c]};
const ALfloat diff{TargetGains[c] - gain};
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
{
ALsizei minsize{mini(BufferSize, Counter)};
const ALfloat step{diff * delta};
ALfloat step_count{0.0f};
/* Mix with applying gain steps in aligned multiples of 4. */
if(LIKELY(minsize > 3))
{
const float32x4_t four4{vdupq_n_f32(4.0f)};
const float32x4_t step4{vdupq_n_f32(step)};
const float32x4_t gain4{vdupq_n_f32(gain)};
float32x4_t step_count4{vsetq_lane_f32(0.0f,
vsetq_lane_f32(1.0f,
vsetq_lane_f32(2.0f,
vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3),
2), 1), 0
)};
ALsizei todo{minsize >> 2};
do {
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t dry4 = vld1q_f32(&dst[pos]);
dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
step_count4 = vaddq_f32(step_count4, four4);
vst1q_f32(&dst[pos], dry4);
pos += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after
* the last four mixed samples, so the lowest element
* represents the next step count to apply.
*/
step_count = vgetq_lane_f32(step_count4, 0);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(;pos < minsize;pos++)
{
dst[pos] += data[pos]*(gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = TargetGains[c];
else
gain += step*step_count;
CurrentGains[c] = gain;
/* Mix until pos is aligned with 4 or the mix is done. */
minsize = mini(BufferSize, (pos+3)&~3);
for(;pos < minsize;pos++)
dst[pos] += data[pos]*gain;
}
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(LIKELY(BufferSize-pos > 3))
{
ALsizei todo{(BufferSize-pos) >> 2};
const float32x4_t gain4 = vdupq_n_f32(gain);
do {
const float32x4_t val4 = vld1q_f32(&data[pos]);
float32x4_t dry4 = vld1q_f32(&dst[pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(&dst[pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
dst[pos] += data[pos]*gain;
}
}
template<>
void MixRow_<NEONTag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
{
ASSUME(InChans > 0);
ASSUME(BufferSize > 0);
for(ALsizei c{0};c < InChans;c++)
{
const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])};
ALsizei pos{0};
const ALfloat gain{Gains[c]};
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
continue;
if(LIKELY(BufferSize > 3))
{
ALsizei todo{BufferSize >> 2};
float32x4_t gain4{vdupq_n_f32(gain)};
do {
const float32x4_t val4 = vld1q_f32(&src[pos]);
float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
dry4 = vmlaq_f32(dry4, val4, gain4);
vst1q_f32(&OutBuffer[pos], dry4);
pos += 4;
} while(--todo);
}
for(;pos < BufferSize;pos++)
OutBuffer[pos] += src[pos]*gain;
}
}