444e9563b3
This is a bit more efficient than calling the normal HRTF mixing function twice, and helps solve the problem of the values generated from convolution not being consistent with the new HRIR.
231 lines
7.6 KiB
C
231 lines
7.6 KiB
C
#include "config.h"
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alu.h"
|
|
|
|
#include "alSource.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "mixer_defs.h"
|
|
|
|
|
|
const ALfloat *Resample_bsinc32_SSE(const InterpState *state, const ALfloat *restrict src,
|
|
ALsizei frac, ALint increment, ALfloat *restrict dst,
|
|
ALsizei dstlen)
|
|
{
|
|
const __m128 sf4 = _mm_set1_ps(state->bsinc.sf);
|
|
const ALsizei m = state->bsinc.m;
|
|
const ALfloat *fil, *scd, *phd, *spd;
|
|
ALsizei pi, i, j;
|
|
ALfloat pf;
|
|
__m128 r4;
|
|
|
|
src += state->bsinc.l;
|
|
for(i = 0;i < dstlen;i++)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
pi = frac >> FRAC_PHASE_BITDIFF;
|
|
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
fil = ASSUME_ALIGNED(state->bsinc.coeffs[pi].filter, 16);
|
|
scd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].scDelta, 16);
|
|
phd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].phDelta, 16);
|
|
spd = ASSUME_ALIGNED(state->bsinc.coeffs[pi].spDelta, 16);
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
r4 = _mm_setzero_ps();
|
|
{
|
|
const __m128 pf4 = _mm_set1_ps(pf);
|
|
#define LD4(x) _mm_load_ps(x)
|
|
#define ULD4(x) _mm_loadu_ps(x)
|
|
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
|
|
for(j = 0;j < m;j+=4)
|
|
{
|
|
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
|
|
const __m128 f4 = MLA4(MLA4(LD4(&fil[j]), sf4, LD4(&scd[j])),
|
|
pf4, MLA4(LD4(&phd[j]), sf4, LD4(&spd[j]))
|
|
);
|
|
/* r += f*src */
|
|
r4 = MLA4(r4, f4, ULD4(&src[j]));
|
|
}
|
|
#undef MLA4
|
|
#undef ULD4
|
|
#undef LD4
|
|
}
|
|
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
|
|
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
|
|
dst[i] = _mm_cvtss_f32(r4);
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
|
|
const ALsizei IrSize,
|
|
const ALfloat (*restrict Coeffs)[2],
|
|
ALfloat left, ALfloat right)
|
|
{
|
|
const __m128 lrlr = _mm_setr_ps(left, right, left, right);
|
|
__m128 vals = _mm_setzero_ps();
|
|
__m128 coeffs;
|
|
ALsizei i;
|
|
|
|
Values = ASSUME_ALIGNED(Values, 16);
|
|
Coeffs = ASSUME_ALIGNED(Coeffs, 16);
|
|
if((Offset&1))
|
|
{
|
|
const ALsizei o0 = Offset&HRIR_MASK;
|
|
const ALsizei o1 = (Offset+IrSize-1)&HRIR_MASK;
|
|
__m128 imp0, imp1;
|
|
|
|
coeffs = _mm_load_ps(&Coeffs[0][0]);
|
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
|
|
imp0 = _mm_mul_ps(lrlr, coeffs);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi((__m64*)&Values[o0][0], vals);
|
|
for(i = 1;i < IrSize-1;i += 2)
|
|
{
|
|
const ALsizei o2 = (Offset+i)&HRIR_MASK;
|
|
|
|
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
|
|
vals = _mm_load_ps(&Values[o2][0]);
|
|
imp1 = _mm_mul_ps(lrlr, coeffs);
|
|
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_store_ps(&Values[o2][0], vals);
|
|
imp0 = imp1;
|
|
}
|
|
vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
|
|
imp0 = _mm_movehl_ps(imp0, imp0);
|
|
vals = _mm_add_ps(imp0, vals);
|
|
_mm_storel_pi((__m64*)&Values[o1][0], vals);
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < IrSize;i += 2)
|
|
{
|
|
const ALsizei o = (Offset + i)&HRIR_MASK;
|
|
|
|
coeffs = _mm_load_ps(&Coeffs[i][0]);
|
|
vals = _mm_load_ps(&Values[o][0]);
|
|
vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
|
|
_mm_store_ps(&Values[o][0], vals);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define MixHrtf MixHrtf_SSE
|
|
#define MixHrtfBlend MixHrtfBlend_SSE
|
|
#define MixDirectHrtf MixDirectHrtf_SSE
|
|
#include "mixer_inc.c"
|
|
#undef MixHrtf
|
|
|
|
|
|
void Mix_SSE(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
|
|
ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
|
|
ALsizei BufferSize)
|
|
{
|
|
ALfloat gain, delta, step;
|
|
__m128 gain4;
|
|
ALsizei c;
|
|
|
|
delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
|
|
|
|
for(c = 0;c < OutChans;c++)
|
|
{
|
|
ALsizei pos = 0;
|
|
gain = CurrentGains[c];
|
|
step = (TargetGains[c] - gain) * delta;
|
|
if(fabsf(step) > FLT_EPSILON)
|
|
{
|
|
ALsizei minsize = mini(BufferSize, Counter);
|
|
/* Mix with applying gain steps in aligned multiples of 4. */
|
|
if(minsize-pos > 3)
|
|
{
|
|
__m128 step4;
|
|
gain4 = _mm_setr_ps(
|
|
gain,
|
|
gain + step,
|
|
gain + step + step,
|
|
gain + step + step + step
|
|
);
|
|
step4 = _mm_set1_ps(step + step + step + step);
|
|
do {
|
|
const __m128 val4 = _mm_load_ps(&data[pos]);
|
|
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
gain4 = _mm_add_ps(gain4, step4);
|
|
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
|
|
pos += 4;
|
|
} while(minsize-pos > 3);
|
|
/* NOTE: gain4 now represents the next four gains after the
|
|
* last four mixed samples, so the lowest element represents
|
|
* the next gain to apply.
|
|
*/
|
|
gain = _mm_cvtss_f32(gain4);
|
|
}
|
|
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
|
|
for(;pos < minsize;pos++)
|
|
{
|
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
|
gain += step;
|
|
}
|
|
if(pos == Counter)
|
|
gain = TargetGains[c];
|
|
CurrentGains[c] = gain;
|
|
|
|
/* Mix until pos is aligned with 4 or the mix is done. */
|
|
minsize = mini(BufferSize, (pos+3)&~3);
|
|
for(;pos < minsize;pos++)
|
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
|
}
|
|
|
|
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
gain4 = _mm_set1_ps(gain);
|
|
for(;BufferSize-pos > 3;pos += 4)
|
|
{
|
|
const __m128 val4 = _mm_load_ps(&data[pos]);
|
|
__m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[c][OutPos+pos] += data[pos]*gain;
|
|
}
|
|
}
|
|
|
|
void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
|
|
{
|
|
__m128 gain4;
|
|
ALsizei c;
|
|
|
|
for(c = 0;c < InChans;c++)
|
|
{
|
|
ALsizei pos = 0;
|
|
ALfloat gain = Gains[c];
|
|
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
gain4 = _mm_set1_ps(gain);
|
|
for(;BufferSize-pos > 3;pos += 4)
|
|
{
|
|
const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]);
|
|
__m128 dry4 = _mm_load_ps(&OutBuffer[pos]);
|
|
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
|
|
_mm_store_ps(&OutBuffer[pos], dry4);
|
|
}
|
|
for(;pos < BufferSize;pos++)
|
|
OutBuffer[pos] += data[c][InPos+pos]*gain;
|
|
}
|
|
}
|