2017-04-15 18:08:52 -07:00

1136 lines
39 KiB
C

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is an OpenAL backend for Android using the native audio APIs based on
* OpenSL ES 1.0.1. It is based on source code for the native-audio sample app
* bundled with NDK.
*/
#include "config.h"
#include <stdlib.h>
#include <jni.h>
#include "alMain.h"
#include "alu.h"
#include "compat.h"
#include "threads.h"
#include "backends/base.h"
#include <SLES/OpenSLES.h>
#include <SLES/OpenSLES_Android.h>
#include <SLES/OpenSLES_AndroidConfiguration.h>
/* Helper macros */
#define VCALL(obj, func) ((*(obj))->func((obj), EXTRACT_VCALL_ARGS
#define VCALL0(obj, func) ((*(obj))->func((obj) EXTRACT_VCALL_ARGS
static const ALCchar opensl_device[] = "OpenSL";
static SLuint32 GetChannelMask(enum DevFmtChannels chans)
{
switch(chans)
{
case DevFmtMono: return SL_SPEAKER_FRONT_CENTER;
case DevFmtStereo: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT;
case DevFmtQuad: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT|
SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT;
case DevFmtX51: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT|
SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY|
SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT;
case DevFmtX51Rear: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT|
SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY|
SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT;
case DevFmtX61: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT|
SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY|
SL_SPEAKER_BACK_CENTER|
SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT;
case DevFmtX71: return SL_SPEAKER_FRONT_LEFT|SL_SPEAKER_FRONT_RIGHT|
SL_SPEAKER_FRONT_CENTER|SL_SPEAKER_LOW_FREQUENCY|
SL_SPEAKER_BACK_LEFT|SL_SPEAKER_BACK_RIGHT|
SL_SPEAKER_SIDE_LEFT|SL_SPEAKER_SIDE_RIGHT;
case DevFmtAmbi3D:
break;
}
return 0;
}
#ifdef SL_DATAFORMAT_PCM_EX
static SLuint32 GetTypeRepresentation(enum DevFmtType type)
{
switch(type)
{
case DevFmtUByte:
case DevFmtUShort:
case DevFmtUInt:
return SL_PCM_REPRESENTATION_UNSIGNED_INT;
case DevFmtByte:
case DevFmtShort:
case DevFmtInt:
return SL_PCM_REPRESENTATION_SIGNED_INT;
case DevFmtFloat:
return SL_PCM_REPRESENTATION_FLOAT;
}
return 0;
}
#endif
static const char *res_str(SLresult result)
{
switch(result)
{
case SL_RESULT_SUCCESS: return "Success";
case SL_RESULT_PRECONDITIONS_VIOLATED: return "Preconditions violated";
case SL_RESULT_PARAMETER_INVALID: return "Parameter invalid";
case SL_RESULT_MEMORY_FAILURE: return "Memory failure";
case SL_RESULT_RESOURCE_ERROR: return "Resource error";
case SL_RESULT_RESOURCE_LOST: return "Resource lost";
case SL_RESULT_IO_ERROR: return "I/O error";
case SL_RESULT_BUFFER_INSUFFICIENT: return "Buffer insufficient";
case SL_RESULT_CONTENT_CORRUPTED: return "Content corrupted";
case SL_RESULT_CONTENT_UNSUPPORTED: return "Content unsupported";
case SL_RESULT_CONTENT_NOT_FOUND: return "Content not found";
case SL_RESULT_PERMISSION_DENIED: return "Permission denied";
case SL_RESULT_FEATURE_UNSUPPORTED: return "Feature unsupported";
case SL_RESULT_INTERNAL_ERROR: return "Internal error";
case SL_RESULT_UNKNOWN_ERROR: return "Unknown error";
case SL_RESULT_OPERATION_ABORTED: return "Operation aborted";
case SL_RESULT_CONTROL_LOST: return "Control lost";
#ifdef SL_RESULT_READONLY
case SL_RESULT_READONLY: return "ReadOnly";
#endif
#ifdef SL_RESULT_ENGINEOPTION_UNSUPPORTED
case SL_RESULT_ENGINEOPTION_UNSUPPORTED: return "Engine option unsupported";
#endif
#ifdef SL_RESULT_SOURCE_SINK_INCOMPATIBLE
case SL_RESULT_SOURCE_SINK_INCOMPATIBLE: return "Source/Sink incompatible";
#endif
}
return "Unknown error code";
}
#define PRINTERR(x, s) do { \
if((x) != SL_RESULT_SUCCESS) \
ERR("%s: %s\n", (s), res_str((x))); \
} while(0)
typedef struct ALCopenslPlayback {
DERIVE_FROM_TYPE(ALCbackend);
/* engine interfaces */
SLObjectItf mEngineObj;
SLEngineItf mEngine;
/* output mix interfaces */
SLObjectItf mOutputMix;
/* buffer queue player interfaces */
SLObjectItf mBufferQueueObj;
ll_ringbuffer_t *mRing;
alcnd_t mCond;
ALsizei mFrameSize;
ATOMIC(ALenum) mKillNow;
althrd_t mThread;
} ALCopenslPlayback;
static void ALCopenslPlayback_process(SLAndroidSimpleBufferQueueItf bq, void *context);
static int ALCopenslPlayback_mixerProc(void *arg);
static void ALCopenslPlayback_Construct(ALCopenslPlayback *self, ALCdevice *device);
static void ALCopenslPlayback_Destruct(ALCopenslPlayback *self);
static ALCenum ALCopenslPlayback_open(ALCopenslPlayback *self, const ALCchar *name);
static void ALCopenslPlayback_close(ALCopenslPlayback *self);
static ALCboolean ALCopenslPlayback_reset(ALCopenslPlayback *self);
static ALCboolean ALCopenslPlayback_start(ALCopenslPlayback *self);
static void ALCopenslPlayback_stop(ALCopenslPlayback *self);
static DECLARE_FORWARD2(ALCopenslPlayback, ALCbackend, ALCenum, captureSamples, void*, ALCuint)
static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, ALCuint, availableSamples)
static ClockLatency ALCopenslPlayback_getClockLatency(ALCopenslPlayback *self);
static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCopenslPlayback, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCopenslPlayback)
DEFINE_ALCBACKEND_VTABLE(ALCopenslPlayback);
static void ALCopenslPlayback_Construct(ALCopenslPlayback *self, ALCdevice *device)
{
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCopenslPlayback, ALCbackend, self);
self->mEngineObj = NULL;
self->mEngine = NULL;
self->mOutputMix = NULL;
self->mBufferQueueObj = NULL;
self->mRing = NULL;
alcnd_init(&self->mCond);
self->mFrameSize = 0;
ATOMIC_INIT(&self->mKillNow, AL_FALSE);
}
static void ALCopenslPlayback_Destruct(ALCopenslPlayback* self)
{
if(self->mBufferQueueObj != NULL)
VCALL0(self->mBufferQueueObj,Destroy)();
self->mBufferQueueObj = NULL;
if(self->mOutputMix != NULL)
VCALL0(self->mOutputMix,Destroy)();
self->mOutputMix = NULL;
if(self->mEngineObj != NULL)
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
ll_ringbuffer_free(self->mRing);
self->mRing = NULL;
alcnd_destroy(&self->mCond);
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
}
/* this callback handler is called every time a buffer finishes playing */
static void ALCopenslPlayback_process(SLAndroidSimpleBufferQueueItf UNUSED(bq), void *context)
{
ALCopenslPlayback *self = context;
/* A note on the ringbuffer usage: The buffer queue seems to hold on to the
* pointer passed to the Enqueue method, rather than copying the audio.
* Consequently, the ringbuffer contains the audio that is currently queued
* and waiting to play. This process() callback is called when a buffer is
* finished, so we simply move the read pointer up to indicate the space is
* available for writing again, and wake up the mixer thread to mix and
* queue more audio.
*/
ll_ringbuffer_read_advance(self->mRing, 1);
alcnd_signal(&self->mCond);
}
static int ALCopenslPlayback_mixerProc(void *arg)
{
ALCopenslPlayback *self = arg;
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
SLAndroidSimpleBufferQueueItf bufferQueue;
ll_ringbuffer_data_t data[2];
SLPlayItf player;
SLresult result;
size_t padding;
SetRTPriority();
althrd_setname(althrd_current(), MIXER_THREAD_NAME);
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue);
PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDSIMPLEBUFFERQUEUE");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player);
PRINTERR(result, "bufferQueue->GetInterface SL_IID_PLAY");
}
if(SL_RESULT_SUCCESS != result)
{
ALCopenslPlayback_lock(self);
aluHandleDisconnect(device);
ALCopenslPlayback_unlock(self);
return 1;
}
/* NOTE: The ringbuffer will be larger than the desired buffer metrics.
* Calculate the amount of extra space so we know how much to keep unused.
*/
padding = ll_ringbuffer_write_space(self->mRing) - device->NumUpdates;
ALCopenslPlayback_lock(self);
while(ATOMIC_LOAD_SEQ(&self->mKillNow) == AL_FALSE && device->Connected)
{
size_t todo, len0, len1;
if(ll_ringbuffer_write_space(self->mRing) <= padding)
{
SLuint32 state = 0;
result = VCALL(player,GetPlayState)(&state);
PRINTERR(result, "player->GetPlayState");
if(SL_RESULT_SUCCESS == result && state != SL_PLAYSTATE_PLAYING)
{
result = VCALL(player,SetPlayState)(SL_PLAYSTATE_PLAYING);
PRINTERR(result, "player->SetPlayState");
}
if(SL_RESULT_SUCCESS != result)
{
aluHandleDisconnect(device);
break;
}
/* NOTE: Unfortunately, there is an unavoidable race condition
* here. It's possible for the process() method to run, updating
* the read pointer and signaling the condition variable, in
* between checking the write size and waiting for the condition
* variable here. This will cause alcnd_wait to wait until the
* *next* process() invocation signals the condition variable
* again.
*
* However, this should only happen if the mixer is running behind
* anyway (as ideally we'll be asleep in alcnd_wait by the time the
* process() method is invoked), so this behavior is not completely
* unwarranted. It's unfortunate since it'll be wasting time
* sleeping that could be used to catch up, but there's no way
* around it without blocking in the process() method.
*/
if(ll_ringbuffer_write_space(self->mRing) <= padding)
{
alcnd_wait(&self->mCond, &STATIC_CAST(ALCbackend,self)->mMutex);
continue;
}
}
ll_ringbuffer_get_write_vector(self->mRing, data);
todo = data[0].len+data[1].len - padding;
len0 = minu(todo, data[0].len);
len1 = minu(todo-len0, data[1].len);
aluMixData(device, data[0].buf, len0*device->UpdateSize);
for(size_t i = 0;i < len0;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[0].buf, device->UpdateSize*self->mFrameSize);
PRINTERR(result, "bufferQueue->Enqueue");
if(SL_RESULT_SUCCESS == result)
ll_ringbuffer_write_advance(self->mRing, 1);
data[0].buf += device->UpdateSize*self->mFrameSize;
}
if(len1 > 0)
{
aluMixData(device, data[1].buf, len1*device->UpdateSize);
for(size_t i = 0;i < len1;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[1].buf, device->UpdateSize*self->mFrameSize);
PRINTERR(result, "bufferQueue->Enqueue");
if(SL_RESULT_SUCCESS == result)
ll_ringbuffer_write_advance(self->mRing, 1);
data[1].buf += device->UpdateSize*self->mFrameSize;
}
}
}
ALCopenslPlayback_unlock(self);
return 0;
}
static ALCenum ALCopenslPlayback_open(ALCopenslPlayback *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
SLresult result;
if(!name)
name = opensl_device;
else if(strcmp(name, opensl_device) != 0)
return ALC_INVALID_VALUE;
// create engine
result = slCreateEngine(&self->mEngineObj, 0, NULL, 0, NULL, NULL);
PRINTERR(result, "slCreateEngine");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mEngineObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "engine->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mEngineObj,GetInterface)(SL_IID_ENGINE, &self->mEngine);
PRINTERR(result, "engine->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mEngine,CreateOutputMix)(&self->mOutputMix, 0, NULL, NULL);
PRINTERR(result, "engine->CreateOutputMix");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mOutputMix,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "outputMix->Realize");
}
if(SL_RESULT_SUCCESS != result)
{
if(self->mOutputMix != NULL)
VCALL0(self->mOutputMix,Destroy)();
self->mOutputMix = NULL;
if(self->mEngineObj != NULL)
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
return ALC_INVALID_VALUE;
}
alstr_copy_cstr(&device->DeviceName, name);
return ALC_NO_ERROR;
}
static void ALCopenslPlayback_close(ALCopenslPlayback *self)
{
if(self->mBufferQueueObj != NULL)
VCALL0(self->mBufferQueueObj,Destroy)();
self->mBufferQueueObj = NULL;
VCALL0(self->mOutputMix,Destroy)();
self->mOutputMix = NULL;
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
}
static ALCboolean ALCopenslPlayback_reset(ALCopenslPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
SLDataLocator_AndroidSimpleBufferQueue loc_bufq;
SLDataLocator_OutputMix loc_outmix;
SLDataSource audioSrc;
SLDataSink audioSnk;
ALuint sampleRate;
SLInterfaceID ids[2];
SLboolean reqs[2];
SLresult result;
JNIEnv *env;
if(self->mBufferQueueObj != NULL)
VCALL0(self->mBufferQueueObj,Destroy)();
self->mBufferQueueObj = NULL;
sampleRate = device->Frequency;
if(!(device->Flags&DEVICE_FREQUENCY_REQUEST) && (env=Android_GetJNIEnv()) != NULL)
{
/* FIXME: Disabled until I figure out how to get the Context needed for
* the getSystemService call.
*/
#if 0
/* Get necessary stuff for using java.lang.Integer,
* android.content.Context, and android.media.AudioManager.
*/
jclass int_cls = JCALL(env,FindClass)("java/lang/Integer");
jmethodID int_parseint = JCALL(env,GetStaticMethodID)(int_cls,
"parseInt", "(Ljava/lang/String;)I"
);
TRACE("Integer: %p, parseInt: %p\n", int_cls, int_parseint);
jclass ctx_cls = JCALL(env,FindClass)("android/content/Context");
jfieldID ctx_audsvc = JCALL(env,GetStaticFieldID)(ctx_cls,
"AUDIO_SERVICE", "Ljava/lang/String;"
);
jmethodID ctx_getSysSvc = JCALL(env,GetMethodID)(ctx_cls,
"getSystemService", "(Ljava/lang/String;)Ljava/lang/Object;"
);
TRACE("Context: %p, AUDIO_SERVICE: %p, getSystemService: %p\n",
ctx_cls, ctx_audsvc, ctx_getSysSvc);
jclass audmgr_cls = JCALL(env,FindClass)("android/media/AudioManager");
jfieldID audmgr_prop_out_srate = JCALL(env,GetStaticFieldID)(audmgr_cls,
"PROPERTY_OUTPUT_SAMPLE_RATE", "Ljava/lang/String;"
);
jmethodID audmgr_getproperty = JCALL(env,GetMethodID)(audmgr_cls,
"getProperty", "(Ljava/lang/String;)Ljava/lang/String;"
);
TRACE("AudioManager: %p, PROPERTY_OUTPUT_SAMPLE_RATE: %p, getProperty: %p\n",
audmgr_cls, audmgr_prop_out_srate, audmgr_getproperty);
const char *strchars;
jstring strobj;
/* Now make the calls. */
//AudioManager audMgr = (AudioManager)getSystemService(Context.AUDIO_SERVICE);
strobj = JCALL(env,GetStaticObjectField)(ctx_cls, ctx_audsvc);
jobject audMgr = JCALL(env,CallObjectMethod)(ctx_cls, ctx_getSysSvc, strobj);
strchars = JCALL(env,GetStringUTFChars)(strobj, NULL);
TRACE("Context.getSystemService(%s) = %p\n", strchars, audMgr);
JCALL(env,ReleaseStringUTFChars)(strobj, strchars);
//String srateStr = audMgr.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE);
strobj = JCALL(env,GetStaticObjectField)(audmgr_cls, audmgr_prop_out_srate);
jstring srateStr = JCALL(env,CallObjectMethod)(audMgr, audmgr_getproperty, strobj);
strchars = JCALL(env,GetStringUTFChars)(strobj, NULL);
TRACE("audMgr.getProperty(%s) = %p\n", strchars, srateStr);
JCALL(env,ReleaseStringUTFChars)(strobj, strchars);
//int sampleRate = Integer.parseInt(srateStr);
sampleRate = JCALL(env,CallStaticIntMethod)(int_cls, int_parseint, srateStr);
strchars = JCALL(env,GetStringUTFChars)(srateStr, NULL);
TRACE("Got system sample rate %uhz (%s)\n", sampleRate, strchars);
JCALL(env,ReleaseStringUTFChars)(srateStr, strchars);
if(!sampleRate) sampleRate = device->Frequency;
else sampleRate = maxu(sampleRate, MIN_OUTPUT_RATE);
#endif
}
if(sampleRate != device->Frequency)
{
device->NumUpdates = (device->NumUpdates*sampleRate + (device->Frequency>>1)) /
device->Frequency;
device->NumUpdates = maxu(device->NumUpdates, 2);
device->Frequency = sampleRate;
}
device->FmtChans = DevFmtStereo;
device->FmtType = DevFmtShort;
SetDefaultWFXChannelOrder(device);
self->mFrameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder);
loc_bufq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
loc_bufq.numBuffers = device->NumUpdates;
#ifdef SL_DATAFORMAT_PCM_EX
SLDataFormat_PCM_EX format_pcm;
format_pcm.formatType = SL_DATAFORMAT_PCM_EX;
format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder);
format_pcm.sampleRate = device->Frequency * 1000;
format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(device->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
format_pcm.representation = GetTypeRepresentation(device->FmtType);
#else
SLDataFormat_PCM format_pcm;
format_pcm.formatType = SL_DATAFORMAT_PCM;
format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder);
format_pcm.samplesPerSec = device->Frequency * 1000;
format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(device->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
#endif
audioSrc.pLocator = &loc_bufq;
audioSrc.pFormat = &format_pcm;
loc_outmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
loc_outmix.outputMix = self->mOutputMix;
audioSnk.pLocator = &loc_outmix;
audioSnk.pFormat = NULL;
ids[0] = SL_IID_ANDROIDSIMPLEBUFFERQUEUE;
reqs[0] = SL_BOOLEAN_TRUE;
ids[1] = SL_IID_ANDROIDCONFIGURATION;
reqs[1] = SL_BOOLEAN_FALSE;
result = VCALL(self->mEngine,CreateAudioPlayer)(&self->mBufferQueueObj,
&audioSrc, &audioSnk, COUNTOF(ids), ids, reqs
);
PRINTERR(result, "engine->CreateAudioPlayer");
if(SL_RESULT_SUCCESS == result)
{
/* Set the stream type to "media" (games, music, etc), if possible. */
SLAndroidConfigurationItf config;
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config);
PRINTERR(result, "bufferQueue->GetInterface SL_IID_ANDROIDCONFIGURATION");
if(SL_RESULT_SUCCESS == result)
{
SLint32 streamType = SL_ANDROID_STREAM_MEDIA;
result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_STREAM_TYPE,
&streamType, sizeof(streamType)
);
PRINTERR(result, "config->SetConfiguration");
}
/* Clear any error since this was optional. */
result = SL_RESULT_SUCCESS;
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mBufferQueueObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "bufferQueue->Realize");
}
if(SL_RESULT_SUCCESS != result)
{
if(self->mBufferQueueObj != NULL)
VCALL0(self->mBufferQueueObj,Destroy)();
self->mBufferQueueObj = NULL;
return ALC_FALSE;
}
return ALC_TRUE;
}
static ALCboolean ALCopenslPlayback_start(ALCopenslPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend,self)->mDevice;
SLAndroidSimpleBufferQueueItf bufferQueue;
SLresult result;
ll_ringbuffer_free(self->mRing);
/* NOTE: Add an extra update since one period's worth of audio in the ring
* buffer will always be left unfilled because one element of the ring
* buffer will not be writeable, and we only write in period-sized chunks.
*/
self->mRing = ll_ringbuffer_create(device->NumUpdates + 1,
self->mFrameSize*device->UpdateSize);
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue);
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS != result)
return ALC_FALSE;
result = VCALL(bufferQueue,RegisterCallback)(ALCopenslPlayback_process, self);
PRINTERR(result, "bufferQueue->RegisterCallback");
if(SL_RESULT_SUCCESS != result)
return ALC_FALSE;
ATOMIC_STORE_SEQ(&self->mKillNow, AL_FALSE);
if(althrd_create(&self->mThread, ALCopenslPlayback_mixerProc, self) != althrd_success)
{
ERR("Failed to start mixer thread\n");
return ALC_FALSE;
}
return ALC_TRUE;
}
static void ALCopenslPlayback_stop(ALCopenslPlayback *self)
{
SLAndroidSimpleBufferQueueItf bufferQueue;
SLPlayItf player;
SLresult result;
int res;
if(ATOMIC_EXCHANGE_SEQ(&self->mKillNow, AL_TRUE))
return;
/* Lock the backend to ensure we don't flag the mixer to die and signal the
* mixer to wake up in between it checking the flag and going to sleep and
* wait for a wakeup (potentially leading to it never waking back up to see
* the flag).
*/
ALCopenslPlayback_lock(self);
ALCopenslPlayback_unlock(self);
alcnd_signal(&self->mCond);
althrd_join(self->mThread, &res);
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_PLAY, &player);
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(player,SetPlayState)(SL_PLAYSTATE_STOPPED);
PRINTERR(result, "player->SetPlayState");
}
result = VCALL(self->mBufferQueueObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue);
PRINTERR(result, "bufferQueue->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL0(bufferQueue,Clear)();
PRINTERR(result, "bufferQueue->Clear");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(bufferQueue,RegisterCallback)(NULL, NULL);
PRINTERR(result, "bufferQueue->RegisterCallback");
}
if(SL_RESULT_SUCCESS == result)
{
SLAndroidSimpleBufferQueueState state;
do {
althrd_yield();
result = VCALL(bufferQueue,GetState)(&state);
} while(SL_RESULT_SUCCESS == result && state.count > 0);
PRINTERR(result, "bufferQueue->GetState");
}
ll_ringbuffer_free(self->mRing);
self->mRing = NULL;
}
static ClockLatency ALCopenslPlayback_getClockLatency(ALCopenslPlayback *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
ClockLatency ret;
ALCopenslPlayback_lock(self);
ret.ClockTime = GetDeviceClockTime(device);
ret.Latency = ll_ringbuffer_read_space(self->mRing)*device->UpdateSize *
DEVICE_CLOCK_RES / device->Frequency;
ALCopenslPlayback_unlock(self);
return ret;
}
typedef struct ALCopenslCapture {
DERIVE_FROM_TYPE(ALCbackend);
/* engine interfaces */
SLObjectItf mEngineObj;
SLEngineItf mEngine;
/* recording interfaces */
SLObjectItf mRecordObj;
ll_ringbuffer_t *mRing;
ALCuint mSplOffset;
ALsizei mFrameSize;
} ALCopenslCapture;
static void ALCopenslCapture_process(SLAndroidSimpleBufferQueueItf bq, void *context);
static void ALCopenslCapture_Construct(ALCopenslCapture *self, ALCdevice *device);
static void ALCopenslCapture_Destruct(ALCopenslCapture *self);
static ALCenum ALCopenslCapture_open(ALCopenslCapture *self, const ALCchar *name);
static void ALCopenslCapture_close(ALCopenslCapture *self);
static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, ALCboolean, reset)
static ALCboolean ALCopenslCapture_start(ALCopenslCapture *self);
static void ALCopenslCapture_stop(ALCopenslCapture *self);
static ALCenum ALCopenslCapture_captureSamples(ALCopenslCapture *self, ALCvoid *buffer, ALCuint samples);
static ALCuint ALCopenslCapture_availableSamples(ALCopenslCapture *self);
static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, ClockLatency, getClockLatency)
static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, void, lock)
static DECLARE_FORWARD(ALCopenslCapture, ALCbackend, void, unlock)
DECLARE_DEFAULT_ALLOCATORS(ALCopenslCapture)
DEFINE_ALCBACKEND_VTABLE(ALCopenslCapture);
static void ALCopenslCapture_process(SLAndroidSimpleBufferQueueItf UNUSED(bq), void *context)
{
ALCopenslCapture *self = context;
/* A new chunk has been written into the ring buffer, advance it. */
ll_ringbuffer_write_advance(self->mRing, 1);
}
static void ALCopenslCapture_Construct(ALCopenslCapture *self, ALCdevice *device)
{
ALCbackend_Construct(STATIC_CAST(ALCbackend, self), device);
SET_VTABLE2(ALCopenslCapture, ALCbackend, self);
self->mEngineObj = NULL;
self->mEngine = NULL;
self->mRecordObj = NULL;
self->mRing = NULL;
self->mSplOffset = 0;
self->mFrameSize = 0;
}
static void ALCopenslCapture_Destruct(ALCopenslCapture *self)
{
ll_ringbuffer_free(self->mRing);
self->mRing = NULL;
if(self->mRecordObj != NULL)
VCALL0(self->mRecordObj,Destroy)();
self->mRecordObj = NULL;
if(self->mEngineObj != NULL)
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
ALCbackend_Destruct(STATIC_CAST(ALCbackend, self));
}
static ALCenum ALCopenslCapture_open(ALCopenslCapture *self, const ALCchar *name)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
SLDataLocator_AndroidSimpleBufferQueue loc_bq;
SLAndroidSimpleBufferQueueItf bufferQueue;
SLDataLocator_IODevice loc_dev;
SLDataSource audioSrc;
SLDataSink audioSnk;
SLresult result;
if(!name)
name = opensl_device;
else if(strcmp(name, opensl_device) != 0)
return ALC_INVALID_VALUE;
result = slCreateEngine(&self->mEngineObj, 0, NULL, 0, NULL, NULL);
PRINTERR(result, "slCreateEngine");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mEngineObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "engine->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mEngineObj,GetInterface)(SL_IID_ENGINE, &self->mEngine);
PRINTERR(result, "engine->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
/* Ensure the total length is at least 100ms */
ALsizei length = maxi(device->NumUpdates * device->UpdateSize,
device->Frequency / 10);
/* Ensure the per-chunk length is at least 10ms, and no more than 50ms. */
ALsizei update_len = clampi(device->NumUpdates*device->UpdateSize / 3,
device->Frequency / 100,
device->Frequency / 100 * 5);
device->UpdateSize = update_len;
device->NumUpdates = (length+update_len-1) / update_len;
self->mFrameSize = FrameSizeFromDevFmt(device->FmtChans, device->FmtType, device->AmbiOrder);
}
loc_dev.locatorType = SL_DATALOCATOR_IODEVICE;
loc_dev.deviceType = SL_IODEVICE_AUDIOINPUT;
loc_dev.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT;
loc_dev.device = NULL;
audioSrc.pLocator = &loc_dev;
audioSrc.pFormat = NULL;
loc_bq.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
loc_bq.numBuffers = device->NumUpdates;
#ifdef SL_DATAFORMAT_PCM_EX
SLDataFormat_PCM_EX format_pcm;
format_pcm.formatType = SL_DATAFORMAT_PCM_EX;
format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder);
format_pcm.sampleRate = device->Frequency * 1000;
format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(device->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
format_pcm.representation = GetTypeRepresentation(device->FmtType);
#else
SLDataFormat_PCM format_pcm;
format_pcm.formatType = SL_DATAFORMAT_PCM;
format_pcm.numChannels = ChannelsFromDevFmt(device->FmtChans, device->AmbiOrder);
format_pcm.samplesPerSec = device->Frequency * 1000;
format_pcm.bitsPerSample = BytesFromDevFmt(device->FmtType) * 8;
format_pcm.containerSize = format_pcm.bitsPerSample;
format_pcm.channelMask = GetChannelMask(device->FmtChans);
format_pcm.endianness = IS_LITTLE_ENDIAN ? SL_BYTEORDER_LITTLEENDIAN :
SL_BYTEORDER_BIGENDIAN;
#endif
audioSnk.pLocator = &loc_bq;
audioSnk.pFormat = &format_pcm;
if(SL_RESULT_SUCCESS == result)
{
const SLInterfaceID ids[2] = { SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION };
const SLboolean reqs[2] = { SL_BOOLEAN_TRUE, SL_BOOLEAN_FALSE };
result = VCALL(self->mEngine,CreateAudioRecorder)(&self->mRecordObj,
&audioSrc, &audioSnk, COUNTOF(ids), ids, reqs
);
PRINTERR(result, "engine->CreateAudioRecorder");
}
if(SL_RESULT_SUCCESS == result)
{
/* Set the record preset to "generic", if possible. */
SLAndroidConfigurationItf config;
result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDCONFIGURATION, &config);
PRINTERR(result, "recordObj->GetInterface SL_IID_ANDROIDCONFIGURATION");
if(SL_RESULT_SUCCESS == result)
{
SLuint32 preset = SL_ANDROID_RECORDING_PRESET_GENERIC;
result = VCALL(config,SetConfiguration)(SL_ANDROID_KEY_RECORDING_PRESET,
&preset, sizeof(preset)
);
PRINTERR(result, "config->SetConfiguration");
}
/* Clear any error since this was optional. */
result = SL_RESULT_SUCCESS;
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(self->mRecordObj,Realize)(SL_BOOLEAN_FALSE);
PRINTERR(result, "recordObj->Realize");
}
if(SL_RESULT_SUCCESS == result)
{
self->mRing = ll_ringbuffer_create(device->NumUpdates + 1,
device->UpdateSize * self->mFrameSize);
result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue);
PRINTERR(result, "recordObj->GetInterface");
}
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(bufferQueue,RegisterCallback)(ALCopenslCapture_process, self);
PRINTERR(result, "bufferQueue->RegisterCallback");
}
if(SL_RESULT_SUCCESS == result)
{
ALsizei chunk_size = device->UpdateSize * self->mFrameSize;
ll_ringbuffer_data_t data[2];
size_t i;
ll_ringbuffer_get_write_vector(self->mRing, data);
for(i = 0;i < data[0].len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[0].buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
for(i = 0;i < data[1].len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[1].buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
}
if(SL_RESULT_SUCCESS != result)
{
if(self->mRecordObj != NULL)
VCALL0(self->mRecordObj,Destroy)();
self->mRecordObj = NULL;
if(self->mEngineObj != NULL)
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
return ALC_INVALID_VALUE;
}
alstr_copy_cstr(&device->DeviceName, name);
return ALC_NO_ERROR;
}
static void ALCopenslCapture_close(ALCopenslCapture *self)
{
ll_ringbuffer_free(self->mRing);
self->mRing = NULL;
if(self->mRecordObj != NULL)
VCALL0(self->mRecordObj,Destroy)();
self->mRecordObj = NULL;
if(self->mEngineObj != NULL)
VCALL0(self->mEngineObj,Destroy)();
self->mEngineObj = NULL;
self->mEngine = NULL;
}
static ALCboolean ALCopenslCapture_start(ALCopenslCapture *self)
{
SLRecordItf record;
SLresult result;
result = VCALL(self->mRecordObj,GetInterface)(SL_IID_RECORD, &record);
PRINTERR(result, "recordObj->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(record,SetRecordState)(SL_RECORDSTATE_RECORDING);
PRINTERR(result, "record->SetRecordState");
}
if(SL_RESULT_SUCCESS != result)
{
ALCopenslCapture_lock(self);
aluHandleDisconnect(STATIC_CAST(ALCbackend, self)->mDevice);
ALCopenslCapture_unlock(self);
return ALC_FALSE;
}
return ALC_TRUE;
}
static void ALCopenslCapture_stop(ALCopenslCapture *self)
{
SLRecordItf record;
SLresult result;
result = VCALL(self->mRecordObj,GetInterface)(SL_IID_RECORD, &record);
PRINTERR(result, "recordObj->GetInterface");
if(SL_RESULT_SUCCESS == result)
{
result = VCALL(record,SetRecordState)(SL_RECORDSTATE_PAUSED);
PRINTERR(result, "record->SetRecordState");
}
}
static ALCenum ALCopenslCapture_captureSamples(ALCopenslCapture *self, ALCvoid *buffer, ALCuint samples)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
ALsizei chunk_size = device->UpdateSize * self->mFrameSize;
SLAndroidSimpleBufferQueueItf bufferQueue;
ll_ringbuffer_data_t data[2];
SLresult result;
size_t advance;
ALCuint i;
/* Read the desired samples from the ring buffer then advance its read
* pointer.
*/
ll_ringbuffer_get_read_vector(self->mRing, data);
advance = 0;
for(i = 0;i < samples;)
{
ALCuint rem = minu(samples - i, device->UpdateSize - self->mSplOffset);
memcpy((ALCbyte*)buffer + i*self->mFrameSize,
data[0].buf + self->mSplOffset*self->mFrameSize,
rem * self->mFrameSize);
self->mSplOffset += rem;
if(self->mSplOffset == device->UpdateSize)
{
/* Finished a chunk, reset the offset and advance the read pointer. */
self->mSplOffset = 0;
advance++;
data[0].len--;
if(!data[0].len)
data[0] = data[1];
else
data[0].buf += chunk_size;
}
i += rem;
}
ll_ringbuffer_read_advance(self->mRing, advance);
result = VCALL(self->mRecordObj,GetInterface)(SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
&bufferQueue);
PRINTERR(result, "recordObj->GetInterface");
/* Enqueue any newly-writable chunks in the ring buffer. */
ll_ringbuffer_get_write_vector(self->mRing, data);
for(i = 0;i < data[0].len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[0].buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
for(i = 0;i < data[1].len && SL_RESULT_SUCCESS == result;i++)
{
result = VCALL(bufferQueue,Enqueue)(data[1].buf + chunk_size*i, chunk_size);
PRINTERR(result, "bufferQueue->Enqueue");
}
if(SL_RESULT_SUCCESS != result)
{
ALCopenslCapture_lock(self);
aluHandleDisconnect(device);
ALCopenslCapture_unlock(self);
return ALC_INVALID_DEVICE;
}
return ALC_NO_ERROR;
}
static ALCuint ALCopenslCapture_availableSamples(ALCopenslCapture *self)
{
ALCdevice *device = STATIC_CAST(ALCbackend, self)->mDevice;
return ll_ringbuffer_read_space(self->mRing) * device->UpdateSize;
}
typedef struct ALCopenslBackendFactory {
DERIVE_FROM_TYPE(ALCbackendFactory);
} ALCopenslBackendFactory;
#define ALCOPENSLBACKENDFACTORY_INITIALIZER { { GET_VTABLE2(ALCopenslBackendFactory, ALCbackendFactory) } }
static ALCboolean ALCopenslBackendFactory_init(ALCopenslBackendFactory* UNUSED(self))
{
return ALC_TRUE;
}
static void ALCopenslBackendFactory_deinit(ALCopenslBackendFactory* UNUSED(self))
{
}
static ALCboolean ALCopenslBackendFactory_querySupport(ALCopenslBackendFactory* UNUSED(self), ALCbackend_Type type)
{
if(type == ALCbackend_Playback || type == ALCbackend_Capture)
return ALC_TRUE;
return ALC_FALSE;
}
static void ALCopenslBackendFactory_probe(ALCopenslBackendFactory* UNUSED(self), enum DevProbe type)
{
switch(type)
{
case ALL_DEVICE_PROBE:
AppendAllDevicesList(opensl_device);
break;
case CAPTURE_DEVICE_PROBE:
AppendAllDevicesList(opensl_device);
break;
}
}
static ALCbackend* ALCopenslBackendFactory_createBackend(ALCopenslBackendFactory* UNUSED(self), ALCdevice *device, ALCbackend_Type type)
{
if(type == ALCbackend_Playback)
{
ALCopenslPlayback *backend;
NEW_OBJ(backend, ALCopenslPlayback)(device);
if(!backend) return NULL;
return STATIC_CAST(ALCbackend, backend);
}
if(type == ALCbackend_Capture)
{
ALCopenslCapture *backend;
NEW_OBJ(backend, ALCopenslCapture)(device);
if(!backend) return NULL;
return STATIC_CAST(ALCbackend, backend);
}
return NULL;
}
DEFINE_ALCBACKENDFACTORY_VTABLE(ALCopenslBackendFactory);
ALCbackendFactory *ALCopenslBackendFactory_getFactory(void)
{
static ALCopenslBackendFactory factory = ALCOPENSLBACKENDFACTORY_INITIALIZER;
return STATIC_CAST(ALCbackendFactory, &factory);
}