47260fc70b
This better calculates the environment coverage by correctly calculating the portal's extents, improves the panning direction when close to the portal, and applies attenuation based on contribution. Movement has changed to make the listener move back and forth between environments with a stationary source, rather than continually looping environments with a position-relative source.
697 lines
26 KiB
C
697 lines
26 KiB
C
/*
|
|
* OpenAL Multi-Zone Reverb Example
|
|
*
|
|
* Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
/* This file contains an example for controlling multiple reverb zones to
|
|
* smoothly transition between reverb environments. The general concept is to
|
|
* extend single-reverb by also tracking the closest adjacent environment, and
|
|
* utilize EAX Reverb's panning vectors to position them relative to the
|
|
* listener.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <SDL_sound.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "AL/alext.h"
|
|
#include "AL/efx-presets.h"
|
|
|
|
#include "common/alhelpers.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
|
|
/* Filter object functions */
|
|
static LPALGENFILTERS alGenFilters;
|
|
static LPALDELETEFILTERS alDeleteFilters;
|
|
static LPALISFILTER alIsFilter;
|
|
static LPALFILTERI alFilteri;
|
|
static LPALFILTERIV alFilteriv;
|
|
static LPALFILTERF alFilterf;
|
|
static LPALFILTERFV alFilterfv;
|
|
static LPALGETFILTERI alGetFilteri;
|
|
static LPALGETFILTERIV alGetFilteriv;
|
|
static LPALGETFILTERF alGetFilterf;
|
|
static LPALGETFILTERFV alGetFilterfv;
|
|
|
|
/* Effect object functions */
|
|
static LPALGENEFFECTS alGenEffects;
|
|
static LPALDELETEEFFECTS alDeleteEffects;
|
|
static LPALISEFFECT alIsEffect;
|
|
static LPALEFFECTI alEffecti;
|
|
static LPALEFFECTIV alEffectiv;
|
|
static LPALEFFECTF alEffectf;
|
|
static LPALEFFECTFV alEffectfv;
|
|
static LPALGETEFFECTI alGetEffecti;
|
|
static LPALGETEFFECTIV alGetEffectiv;
|
|
static LPALGETEFFECTF alGetEffectf;
|
|
static LPALGETEFFECTFV alGetEffectfv;
|
|
|
|
/* Auxiliary Effect Slot object functions */
|
|
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
|
|
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
|
|
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
|
|
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
|
|
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
|
|
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
|
|
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
|
|
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
|
|
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
|
|
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
|
|
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
|
|
|
|
|
|
/* LoadEffect loads the given initial reverb properties into the given OpenAL
|
|
* effect object, and returns non-zero on success.
|
|
*/
|
|
static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
|
|
{
|
|
ALenum err;
|
|
|
|
alGetError();
|
|
|
|
/* Prepare the effect for EAX Reverb (standard reverb doesn't contain
|
|
* the needed panning vectors).
|
|
*/
|
|
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
|
|
if((err=alGetError()) != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
|
|
return 0;
|
|
}
|
|
|
|
/* Load the reverb properties. */
|
|
alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
|
|
alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
|
|
alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
|
|
alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
|
|
alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
|
|
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
|
|
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
|
|
alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
|
|
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
|
|
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
|
|
alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
|
|
alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
|
|
alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
|
|
alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
|
|
alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
|
|
alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
|
|
alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
|
|
alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
|
|
alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
|
|
alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
|
|
|
|
/* Check if an error occured, and return failure if so. */
|
|
if((err=alGetError()) != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
|
|
* returns the new buffer ID.
|
|
*/
|
|
static ALuint LoadSound(const char *filename)
|
|
{
|
|
Sound_Sample *sample;
|
|
ALenum err, format;
|
|
ALuint buffer;
|
|
Uint32 slen;
|
|
|
|
/* Open the audio file */
|
|
sample = Sound_NewSampleFromFile(filename, NULL, 65536);
|
|
if(!sample)
|
|
{
|
|
fprintf(stderr, "Could not open audio in %s\n", filename);
|
|
return 0;
|
|
}
|
|
|
|
/* Get the sound format, and figure out the OpenAL format */
|
|
if(sample->actual.channels == 1)
|
|
{
|
|
if(sample->actual.format == AUDIO_U8)
|
|
format = AL_FORMAT_MONO8;
|
|
else if(sample->actual.format == AUDIO_S16SYS)
|
|
format = AL_FORMAT_MONO16;
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
}
|
|
else if(sample->actual.channels == 2)
|
|
{
|
|
if(sample->actual.format == AUDIO_U8)
|
|
format = AL_FORMAT_STEREO8;
|
|
else if(sample->actual.format == AUDIO_S16SYS)
|
|
format = AL_FORMAT_STEREO16;
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported channel count: %d\n", sample->actual.channels);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
|
|
/* Decode the whole audio stream to a buffer. */
|
|
slen = Sound_DecodeAll(sample);
|
|
if(!sample->buffer || slen == 0)
|
|
{
|
|
fprintf(stderr, "Failed to read audio from %s\n", filename);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
|
|
/* Buffer the audio data into a new buffer object, then free the data and
|
|
* close the file. */
|
|
buffer = 0;
|
|
alGenBuffers(1, &buffer);
|
|
alBufferData(buffer, format, sample->buffer, slen, sample->actual.rate);
|
|
Sound_FreeSample(sample);
|
|
|
|
/* Check if an error occured, and clean up if so. */
|
|
err = alGetError();
|
|
if(err != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
|
|
if(buffer && alIsBuffer(buffer))
|
|
alDeleteBuffers(1, &buffer);
|
|
return 0;
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
|
|
/* Helper to calculate the dot-product of the two given vectors. */
|
|
static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
|
|
{
|
|
return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
|
|
}
|
|
|
|
/* Helper to normalize a given vector. */
|
|
static void normalize(ALfloat vec[3])
|
|
{
|
|
ALfloat mag = sqrtf(dot_product(vec, vec));
|
|
if(mag > 0.00001f)
|
|
{
|
|
vec[0] /= mag;
|
|
vec[1] /= mag;
|
|
vec[2] /= mag;
|
|
}
|
|
else
|
|
{
|
|
vec[0] = 0.0f;
|
|
vec[1] = 0.0f;
|
|
vec[2] = 0.0f;
|
|
}
|
|
}
|
|
|
|
|
|
/* The main update function to update the listener and environment effects. */
|
|
static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
|
|
{
|
|
static const ALfloat listener_move_scale = 10.0f;
|
|
/* Individual reverb zones are connected via "portals". Each portal has a
|
|
* position (center point of the connecting area), a normal (facing
|
|
* direction), and a radius (approximate size of the connecting area).
|
|
*/
|
|
const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
|
|
const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
|
|
const ALfloat portal_radius = 2.5f;
|
|
ALfloat other_dir[3], this_dir[3];
|
|
ALfloat listener_pos[3];
|
|
ALfloat local_norm[3];
|
|
ALfloat local_dir[3];
|
|
ALfloat near_edge[3];
|
|
ALfloat far_edge[3];
|
|
ALfloat dist, edist;
|
|
|
|
/* Update the listener position for the amount of time passed. This uses a
|
|
* simple triangular LFO to offset the position (moves along the X axis
|
|
* between -listener_move_scale and +listener_move_scale for each
|
|
* transition).
|
|
*/
|
|
listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
|
|
listener_pos[1] = 0.0f;
|
|
listener_pos[2] = 0.0f;
|
|
alListenerfv(AL_POSITION, listener_pos);
|
|
|
|
/* Calculate local_dir, which represents the listener-relative point to the
|
|
* adjacent zone (should also include orientation). Because EAX Reverb uses
|
|
* right-handed coordinates instead of left-handed like the rest of OpenAL,
|
|
* negate Z for the local values.
|
|
*/
|
|
local_dir[0] = portal_pos[0] - listener_pos[0];
|
|
local_dir[1] = portal_pos[1] - listener_pos[1];
|
|
local_dir[2] = -(portal_pos[2] - listener_pos[2]);
|
|
/* A normal application would also rotate the portal's normal given the
|
|
* listener orientation, to get the listener-relative normal.
|
|
*/
|
|
local_norm[0] = portal_norm[0];
|
|
local_norm[1] = portal_norm[1];
|
|
local_norm[2] = -portal_norm[2];
|
|
|
|
/* Calculate the distance from the listener to the portal, and ensure it's
|
|
* far enough away to not suffer severe floating-point precision issues.
|
|
*/
|
|
dist = sqrtf(dot_product(local_dir, local_dir));
|
|
if(dist > 0.00001f)
|
|
{
|
|
const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
|
|
ALuint other_effect, this_effect;
|
|
ALfloat magnitude, dir_dot_norm;
|
|
|
|
/* Normalize the direction to the portal. */
|
|
local_dir[0] /= dist;
|
|
local_dir[1] /= dist;
|
|
local_dir[2] /= dist;
|
|
|
|
/* Calculate the dot product of the portal's local direction and local
|
|
* normal, which is used for angular and side checks later on.
|
|
*/
|
|
dir_dot_norm = dot_product(local_dir, local_norm);
|
|
|
|
/* Figure out which zone we're in. */
|
|
if(dir_dot_norm <= 0.0f)
|
|
{
|
|
/* We're in front of the portal, so we're in Zone 0. */
|
|
this_effect = effects[0];
|
|
other_effect = effects[1];
|
|
this_reverb = &reverbs[0];
|
|
other_reverb = &reverbs[1];
|
|
}
|
|
else
|
|
{
|
|
/* We're behind the portal, so we're in Zone 1. */
|
|
this_effect = effects[1];
|
|
other_effect = effects[0];
|
|
this_reverb = &reverbs[1];
|
|
other_reverb = &reverbs[0];
|
|
}
|
|
|
|
/* Calculate the listener-relative extents of the portal. */
|
|
/* First, project the listener-to-portal vector onto the portal's plane
|
|
* to get the portal-relative direction along the plane that goes away
|
|
* from the listener (toward the farthest edge of the portal).
|
|
*/
|
|
far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
|
|
far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
|
|
far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
|
|
|
|
edist = sqrtf(dot_product(far_edge, far_edge));
|
|
if(edist > 0.0001f)
|
|
{
|
|
/* Rescale the portal-relative vector to be at the radius edge. */
|
|
ALfloat mag = portal_radius / edist;
|
|
far_edge[0] *= mag;
|
|
far_edge[1] *= mag;
|
|
far_edge[2] *= mag;
|
|
|
|
/* Calculate the closest edge of the portal by negating the
|
|
* farthest, and add an offset to make them both relative to the
|
|
* listener.
|
|
*/
|
|
near_edge[0] = local_dir[0]*dist - far_edge[0];
|
|
near_edge[1] = local_dir[1]*dist - far_edge[1];
|
|
near_edge[2] = local_dir[2]*dist - far_edge[2];
|
|
far_edge[0] += local_dir[0]*dist;
|
|
far_edge[1] += local_dir[1]*dist;
|
|
far_edge[2] += local_dir[2]*dist;
|
|
|
|
/* Normalize the listener-relative extents of the portal, then
|
|
* calculate the panning magnitude for the other zone given the
|
|
* apparent size of the opening. The panning magnitude affects the
|
|
* envelopment of the environment, with 1 being a point, 0.5 being
|
|
* half coverage around the listener, and 0 being full coverage.
|
|
*/
|
|
normalize(far_edge);
|
|
normalize(near_edge);
|
|
magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
|
|
|
|
/* Recalculate the panning direction, to be directly between the
|
|
* direction of the two extents.
|
|
*/
|
|
local_dir[0] = far_edge[0] + near_edge[0];
|
|
local_dir[1] = far_edge[1] + near_edge[1];
|
|
local_dir[2] = far_edge[2] + near_edge[2];
|
|
normalize(local_dir);
|
|
}
|
|
else
|
|
{
|
|
/* If we get here, the listener is directly in front of or behind
|
|
* the center of the portal, making all aperture edges effectively
|
|
* equidistant. Calculating the panning magnitude is simplified,
|
|
* using the arctangent of the radius and distance.
|
|
*/
|
|
magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
|
|
}
|
|
|
|
/* Scale the other zone's panning vector. */
|
|
other_dir[0] = local_dir[0] * magnitude;
|
|
other_dir[1] = local_dir[1] * magnitude;
|
|
other_dir[2] = local_dir[2] * magnitude;
|
|
/* Pan the current zone to the opposite direction of the portal, and
|
|
* take the remaining percentage of the portal's magnitude.
|
|
*/
|
|
this_dir[0] = local_dir[0] * (magnitude-1.0f);
|
|
this_dir[1] = local_dir[1] * (magnitude-1.0f);
|
|
this_dir[2] = local_dir[2] * (magnitude-1.0f);
|
|
|
|
/* Now set the effects' panning vectors and gain. Energy is shared
|
|
* between environments, so attenuate according to each zone's
|
|
* contribution (note: gain^2 = energy).
|
|
*/
|
|
alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
|
|
alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
|
|
alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
|
|
alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
|
|
|
|
alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
|
|
alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
|
|
alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
|
|
alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
|
|
}
|
|
else
|
|
{
|
|
/* We're practically in the center of the portal. Give the panning
|
|
* vectors a 50/50 split, with Zone 0 covering the half in front of
|
|
* the normal, and Zone 1 covering the half behind.
|
|
*/
|
|
this_dir[0] = local_norm[0] / 2.0f;
|
|
this_dir[1] = local_norm[1] / 2.0f;
|
|
this_dir[2] = local_norm[2] / 2.0f;
|
|
|
|
other_dir[0] = local_norm[0] / -2.0f;
|
|
other_dir[1] = local_norm[1] / -2.0f;
|
|
other_dir[2] = local_norm[2] / -2.0f;
|
|
|
|
alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
|
|
alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
|
|
alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
|
|
alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
|
|
|
|
alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
|
|
alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
|
|
alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
|
|
alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
|
|
}
|
|
|
|
/* Finally, update the effect slots with the updated effect parameters. */
|
|
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
|
|
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
static const int MaxTransitions = 8;
|
|
EFXEAXREVERBPROPERTIES reverbs[2] = {
|
|
EFX_REVERB_PRESET_CARPETEDHALLWAY,
|
|
EFX_REVERB_PRESET_BATHROOM
|
|
};
|
|
struct timespec basetime;
|
|
ALCdevice *device = NULL;
|
|
ALCcontext *context = NULL;
|
|
ALuint effects[2] = { 0, 0 };
|
|
ALuint slots[2] = { 0, 0 };
|
|
ALuint direct_filter = 0;
|
|
ALuint buffer = 0;
|
|
ALuint source = 0;
|
|
ALCint num_sends = 0;
|
|
ALenum state = AL_INITIAL;
|
|
ALfloat direct_gain = 1.0f;
|
|
int loops = 0;
|
|
|
|
/* Print out usage if no arguments were specified */
|
|
if(argc < 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
|
|
"Options:\n"
|
|
"\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
|
|
argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
|
|
* sends (if multiple sends are supported, 2 are provided by default; if
|
|
* you want more, you have to request it through alcCreateContext).
|
|
*/
|
|
argv++; argc--;
|
|
if(InitAL(&argv, &argc) != 0)
|
|
return 1;
|
|
|
|
while(argc > 0)
|
|
{
|
|
if(strcmp(argv[0], "-nodirect") == 0)
|
|
direct_gain = 0.0f;
|
|
else
|
|
break;
|
|
argv++;
|
|
argc--;
|
|
}
|
|
if(argc < 1)
|
|
{
|
|
fprintf(stderr, "No filename spacified.\n");
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
context = alcGetCurrentContext();
|
|
device = alcGetContextsDevice(context);
|
|
|
|
if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
|
|
{
|
|
fprintf(stderr, "Error: EFX not supported\n");
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
num_sends = 0;
|
|
alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
|
|
if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
|
|
{
|
|
fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
|
|
num_sends);
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
/* Define a macro to help load the function pointers. */
|
|
#define LOAD_PROC(x) ((x) = alGetProcAddress(#x))
|
|
LOAD_PROC(alGenFilters);
|
|
LOAD_PROC(alDeleteFilters);
|
|
LOAD_PROC(alIsFilter);
|
|
LOAD_PROC(alFilteri);
|
|
LOAD_PROC(alFilteriv);
|
|
LOAD_PROC(alFilterf);
|
|
LOAD_PROC(alFilterfv);
|
|
LOAD_PROC(alGetFilteri);
|
|
LOAD_PROC(alGetFilteriv);
|
|
LOAD_PROC(alGetFilterf);
|
|
LOAD_PROC(alGetFilterfv);
|
|
|
|
LOAD_PROC(alGenEffects);
|
|
LOAD_PROC(alDeleteEffects);
|
|
LOAD_PROC(alIsEffect);
|
|
LOAD_PROC(alEffecti);
|
|
LOAD_PROC(alEffectiv);
|
|
LOAD_PROC(alEffectf);
|
|
LOAD_PROC(alEffectfv);
|
|
LOAD_PROC(alGetEffecti);
|
|
LOAD_PROC(alGetEffectiv);
|
|
LOAD_PROC(alGetEffectf);
|
|
LOAD_PROC(alGetEffectfv);
|
|
|
|
LOAD_PROC(alGenAuxiliaryEffectSlots);
|
|
LOAD_PROC(alDeleteAuxiliaryEffectSlots);
|
|
LOAD_PROC(alIsAuxiliaryEffectSlot);
|
|
LOAD_PROC(alAuxiliaryEffectSloti);
|
|
LOAD_PROC(alAuxiliaryEffectSlotiv);
|
|
LOAD_PROC(alAuxiliaryEffectSlotf);
|
|
LOAD_PROC(alAuxiliaryEffectSlotfv);
|
|
LOAD_PROC(alGetAuxiliaryEffectSloti);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotiv);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotf);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotfv);
|
|
#undef LOAD_PROC
|
|
|
|
/* Initialize SDL_sound. */
|
|
Sound_Init();
|
|
|
|
/* Load the sound into a buffer. */
|
|
buffer = LoadSound(argv[0]);
|
|
if(!buffer)
|
|
{
|
|
CloseAL();
|
|
Sound_Quit();
|
|
return 1;
|
|
}
|
|
|
|
/* Generate two effects for two "zones", and load a reverb into each one.
|
|
* Note that unlike single-zone reverb, where you can store one effect per
|
|
* preset, for multi-zone reverb you should have one effect per environment
|
|
* instance, or one per audible zone. This is because we'll be changing the
|
|
* effects' properties in real-time based on the environment instance
|
|
* relative to the listener.
|
|
*/
|
|
alGenEffects(2, effects);
|
|
if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
|
|
{
|
|
alDeleteEffects(2, effects);
|
|
alDeleteBuffers(1, &buffer);
|
|
Sound_Quit();
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
/* Create the effect slot objects, one for each "active" effect. */
|
|
alGenAuxiliaryEffectSlots(2, slots);
|
|
|
|
/* Tell the effect slots to use the loaded effect objects, with slot 0 for
|
|
* Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
|
|
* effect properties. Modifying or deleting the effect object afterward
|
|
* won't directly affect the effect slot until they're reapplied like this.
|
|
*/
|
|
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
|
|
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
|
|
|
|
/* For the purposes of this example, prepare a filter that optionally
|
|
* silences the direct path which allows us to hear just the reverberation.
|
|
* A filter like this is normally used for obstruction, where the path
|
|
* directly between the listener and source is blocked (the exact
|
|
* properties depending on the type and thickness of the obstructing
|
|
* material).
|
|
*/
|
|
alGenFilters(1, &direct_filter);
|
|
alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
|
|
alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
|
|
|
|
/* Create the source to play the sound with, place it in front of the
|
|
* listener's path in the left zone.
|
|
*/
|
|
source = 0;
|
|
alGenSources(1, &source);
|
|
alSourcei(source, AL_LOOPING, AL_TRUE);
|
|
alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
|
|
alSourcei(source, AL_DIRECT_FILTER, direct_filter);
|
|
alSourcei(source, AL_BUFFER, buffer);
|
|
|
|
/* Connect the source to the effect slots. Here, we connect source send 0
|
|
* to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
|
|
* to occlude the source from each zone by varying amounts; for example, a
|
|
* source within a particular zone would be unfiltered, while a source that
|
|
* can only see a zone through a window or thin wall may be attenuated for
|
|
* that zone.
|
|
*/
|
|
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[0], 0, AL_FILTER_NULL);
|
|
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[1], 1, AL_FILTER_NULL);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
|
|
|
|
/* Get the current time as the base for timing in the main loop. */
|
|
altimespec_get(&basetime, AL_TIME_UTC);
|
|
loops = 0;
|
|
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
|
|
|
|
/* Play the sound for a while. */
|
|
alSourcePlay(source);
|
|
do {
|
|
struct timespec curtime;
|
|
ALfloat timediff;
|
|
|
|
/* Start a batch update, to ensure all changes apply simultaneously. */
|
|
alcSuspendContext(context);
|
|
|
|
/* Get the current time to track the amount of time that passed.
|
|
* Convert the difference to seconds.
|
|
*/
|
|
altimespec_get(&curtime, AL_TIME_UTC);
|
|
timediff = (ALfloat)(curtime.tv_sec - basetime.tv_sec);
|
|
timediff += (ALfloat)(curtime.tv_nsec - basetime.tv_nsec) / 1000000000.0f;
|
|
|
|
/* Avoid negative time deltas, in case of non-monotonic clocks. */
|
|
if(timediff < 0.0f)
|
|
timediff = 0.0f;
|
|
else while(timediff >= 4.0f*((loops&1)+1))
|
|
{
|
|
/* For this example, each transition occurs over 4 seconds, and
|
|
* there's 2 transitions per cycle.
|
|
*/
|
|
if(++loops < MaxTransitions)
|
|
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
|
|
if(!(loops&1))
|
|
{
|
|
/* Cycle completed. Decrease the delta and increase the base
|
|
* time to start a new cycle.
|
|
*/
|
|
timediff -= 8.0f;
|
|
basetime.tv_sec += 8;
|
|
}
|
|
}
|
|
|
|
/* Update the listener and effects, and finish the batch. */
|
|
UpdateListenerAndEffects(timediff, slots, effects, reverbs);
|
|
alcProcessContext(context);
|
|
|
|
al_nssleep(10000000);
|
|
|
|
alGetSourcei(source, AL_SOURCE_STATE, &state);
|
|
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
|
|
|
|
/* All done. Delete resources, and close down SDL_sound and OpenAL. */
|
|
alDeleteSources(1, &source);
|
|
alDeleteAuxiliaryEffectSlots(2, slots);
|
|
alDeleteEffects(2, effects);
|
|
alDeleteFilters(1, &direct_filter);
|
|
alDeleteBuffers(1, &buffer);
|
|
|
|
Sound_Quit();
|
|
CloseAL();
|
|
|
|
return 0;
|
|
}
|