openal-soft/Alc/hrtf.c
Chris Robinson 45d6bb58a4 Partially revert "Use a different method for HRTF mixing"
The sound localization with virtual channel mixing was just too poor, so while
it's more costly to do per-source HRTF mixing, it's unavoidable if you want
good localization.

This is only partially reverted because having the virtual channel is still
beneficial, particularly with B-Format rendering and effect mixing which
otherwise skip HRTF processing. As before, the number of virtual channels can
potentially be customized, specifying more or less channels depending on the
system's needs.
2014-11-23 10:49:54 -08:00

817 lines
25 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2011 by Chris Robinson
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <stdlib.h>
#include <ctype.h>
#include "AL/al.h"
#include "AL/alc.h"
#include "alMain.h"
#include "alSource.h"
#include "alu.h"
#include "hrtf.h"
/* Current data set limits defined by the makehrtf utility. */
#define MIN_IR_SIZE (8)
#define MAX_IR_SIZE (128)
#define MOD_IR_SIZE (8)
#define MIN_EV_COUNT (5)
#define MAX_EV_COUNT (128)
#define MIN_AZ_COUNT (1)
#define MAX_AZ_COUNT (128)
struct Hrtf {
ALuint sampleRate;
ALuint irSize;
ALubyte evCount;
const ALubyte *azCount;
const ALushort *evOffset;
const ALshort *coeffs;
const ALubyte *delays;
struct Hrtf *next;
};
static const ALchar magicMarker00[8] = "MinPHR00";
static const ALchar magicMarker01[8] = "MinPHR01";
/* First value for pass-through coefficients (remaining are 0), used for omni-
* directional sounds. */
static const ALfloat PassthruCoeff = 32767.0f * 0.707106781187f/*sqrt(0.5)*/;
static struct Hrtf *LoadedHrtfs = NULL;
/* Calculate the elevation indices given the polar elevation in radians.
* This will return two indices between 0 and (evcount - 1) and an
* interpolation factor between 0.0 and 1.0.
*/
static void CalcEvIndices(ALuint evcount, ALfloat ev, ALuint *evidx, ALfloat *evmu)
{
ev = (F_PI_2 + ev) * (evcount-1) / F_PI;
evidx[0] = fastf2u(ev);
evidx[1] = minu(evidx[0] + 1, evcount-1);
*evmu = ev - evidx[0];
}
/* Calculate the azimuth indices given the polar azimuth in radians. This
* will return two indices between 0 and (azcount - 1) and an interpolation
* factor between 0.0 and 1.0.
*/
static void CalcAzIndices(ALuint azcount, ALfloat az, ALuint *azidx, ALfloat *azmu)
{
az = (F_2PI + az) * azcount / (F_2PI);
azidx[0] = fastf2u(az) % azcount;
azidx[1] = (azidx[0] + 1) % azcount;
*azmu = az - floorf(az);
}
/* Calculates the normalized HRTF transition factor (delta) from the changes
* in gain and listener to source angle between updates. The result is a
* normalized delta factor that can be used to calculate moving HRIR stepping
* values.
*/
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
{
ALfloat gainChange, angleChange, change;
// Calculate the normalized dB gain change.
newGain = maxf(newGain, 0.0001f);
oldGain = maxf(oldGain, 0.0001f);
gainChange = fabsf(log10f(newGain / oldGain) / log10f(0.0001f));
// Calculate the angle change only when there is enough gain to notice it.
angleChange = 0.0f;
if(gainChange > 0.0001f || newGain > 0.0001f)
{
// No angle change when the directions are equal or degenerate (when
// both have zero length).
if(newdir[0] != olddir[0] || newdir[1] != olddir[1] || newdir[2] != olddir[2])
{
ALfloat dotp = olddir[0]*newdir[0] + olddir[1]*newdir[1] + olddir[2]*newdir[2];
angleChange = acosf(clampf(dotp, -1.0f, 1.0f)) / F_PI;
}
}
// Use the largest of the two changes for the delta factor, and apply a
// significance shaping function to it.
change = maxf(angleChange * 25.0f, gainChange) * 2.0f;
return minf(change, 1.0f);
}
/* Calculates static HRIR coefficients and delays for the given polar
* elevation and azimuth in radians. Linear interpolation is used to
* increase the apparent resolution of the HRIR data set. The coefficients
* are also normalized and attenuated by the specified gain.
*/
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALuint i;
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. */
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated HRIR coefficients using linear
* interpolation when there is enough gain to warrant it. Zero the
* coefficients if gain is too low.
*/
if(gain > 0.0001f)
{
ALfloat c;
i = 0;
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);
for(i = 1;i < Hrtf->irSize;i++)
{
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
}
}
}
/* Calculates the moving HRIR target coefficients, target delays, and
* stepping values for the given polar elevation and azimuth in radians.
* Linear interpolation is used to increase the apparent resolution of the
* HRIR data set. The coefficients are also normalized and attenuated by the
* specified gain. Stepping resolution and count is determined using the
* given delta factor between 0.0 and 1.0.
*/
ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat dirfact, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
{
ALuint evidx[2], lidx[4], ridx[4];
ALfloat mu[3], blend[4];
ALfloat left, right;
ALfloat step;
ALuint i;
/* Claculate elevation indices and interpolation factor. */
CalcEvIndices(Hrtf->evCount, elevation, evidx, &mu[2]);
for(i = 0;i < 2;i++)
{
ALuint azcount = Hrtf->azCount[evidx[i]];
ALuint evoffset = Hrtf->evOffset[evidx[i]];
ALuint azidx[2];
/* Calculate azimuth indices and interpolation factor for this elevation. */
CalcAzIndices(azcount, azimuth, azidx, &mu[i]);
/* Calculate a set of linear HRIR indices for left and right channels. */
lidx[i*2 + 0] = evoffset + azidx[0];
lidx[i*2 + 1] = evoffset + azidx[1];
ridx[i*2 + 0] = evoffset + ((azcount-azidx[0]) % azcount);
ridx[i*2 + 1] = evoffset + ((azcount-azidx[1]) % azcount);
}
// Calculate the stepping parameters.
delta = maxf(floorf(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
step = 1.0f / delta;
/* Calculate 4 blending weights for 2D bilinear interpolation. */
blend[0] = (1.0f-mu[0]) * (1.0f-mu[2]);
blend[1] = ( mu[0]) * (1.0f-mu[2]);
blend[2] = (1.0f-mu[1]) * ( mu[2]);
blend[3] = ( mu[1]) * ( mu[2]);
/* Calculate the HRIR delays using linear interpolation. Then calculate
* the delay stepping values using the target and previous running
* delays.
*/
left = (ALfloat)(delays[0] - (delayStep[0] * counter));
right = (ALfloat)(delays[1] - (delayStep[1] * counter));
delays[0] = fastf2u((Hrtf->delays[lidx[0]]*blend[0] + Hrtf->delays[lidx[1]]*blend[1] +
Hrtf->delays[lidx[2]]*blend[2] + Hrtf->delays[lidx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delays[1] = fastf2u((Hrtf->delays[ridx[0]]*blend[0] + Hrtf->delays[ridx[1]]*blend[1] +
Hrtf->delays[ridx[2]]*blend[2] + Hrtf->delays[ridx[3]]*blend[3]) *
dirfact + 0.5f) << HRTFDELAY_BITS;
delayStep[0] = fastf2i(step * (delays[0] - left));
delayStep[1] = fastf2i(step * (delays[1] - right));
/* Calculate the sample offsets for the HRIR indices. */
lidx[0] *= Hrtf->irSize;
lidx[1] *= Hrtf->irSize;
lidx[2] *= Hrtf->irSize;
lidx[3] *= Hrtf->irSize;
ridx[0] *= Hrtf->irSize;
ridx[1] *= Hrtf->irSize;
ridx[2] *= Hrtf->irSize;
ridx[3] *= Hrtf->irSize;
/* Calculate the normalized and attenuated target HRIR coefficients using
* linear interpolation when there is enough gain to warrant it. Zero
* the target coefficients if gain is too low. Then calculate the
* coefficient stepping values using the target and previous running
* coefficients.
*/
if(gain > 0.0001f)
{
ALfloat c;
i = 0;
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(PassthruCoeff, c, dirfact) * gain * (1.0f/32767.0f);;
coeffStep[i][0] = step * (coeffs[i][0] - left);
coeffStep[i][1] = step * (coeffs[i][1] - right);
for(i = 1;i < Hrtf->irSize;i++)
{
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
c = (Hrtf->coeffs[lidx[0]+i]*blend[0] + Hrtf->coeffs[lidx[1]+i]*blend[1] +
Hrtf->coeffs[lidx[2]+i]*blend[2] + Hrtf->coeffs[lidx[3]+i]*blend[3]);
coeffs[i][0] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);;
c = (Hrtf->coeffs[ridx[0]+i]*blend[0] + Hrtf->coeffs[ridx[1]+i]*blend[1] +
Hrtf->coeffs[ridx[2]+i]*blend[2] + Hrtf->coeffs[ridx[3]+i]*blend[3]);
coeffs[i][1] = lerp(0.0f, c, dirfact) * gain * (1.0f/32767.0f);;
coeffStep[i][0] = step * (coeffs[i][0] - left);
coeffStep[i][1] = step * (coeffs[i][1] - right);
}
}
else
{
for(i = 0;i < Hrtf->irSize;i++)
{
left = coeffs[i][0] - (coeffStep[i][0] * counter);
right = coeffs[i][1] - (coeffStep[i][1] * counter);
coeffs[i][0] = 0.0f;
coeffs[i][1] = 0.0f;
coeffStep[i][0] = step * -left;
coeffStep[i][1] = step * -right;
}
}
/* The stepping count is the number of samples necessary for the HRIR to
* complete its transition. The mixer will only apply stepping for this
* many samples.
*/
return fastf2u(delta);
}
static struct Hrtf *LoadHrtf00(FILE *f, ALuint deviceRate)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALushort irSize = 0;
ALubyte evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irCount = fgetc(f);
irCount |= fgetc(f)<<8;
irSize = fgetc(f);
irSize |= fgetc(f)<<8;
evCount = fgetc(f);
if(rate != deviceRate)
{
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
rate, deviceRate);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
evOffset[0] = fgetc(f);
evOffset[0] |= fgetc(f)<<8;
for(i = 1;i < evCount;i++)
{
evOffset[i] = fgetc(f);
evOffset[i] |= fgetc(f)<<8;
if(evOffset[i] <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (last=%d)\n",
i, evOffset[i], evOffset[i-1]);
failed = AL_TRUE;
}
azCount[i-1] = evOffset[i] - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(irCount <= evOffset[i-1])
{
ERR("Invalid evOffset: evOffset[%d]=%d (irCount=%d)\n",
i-1, evOffset[i-1], irCount);
failed = AL_TRUE;
}
azCount[i-1] = irCount - evOffset[i-1];
if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
if(!failed)
{
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf = malloc(sizeof(struct Hrtf));
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = azCount;
Hrtf->evOffset = evOffset;
Hrtf->coeffs = coeffs;
Hrtf->delays = delays;
Hrtf->next = NULL;
return Hrtf;
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return NULL;
}
static struct Hrtf *LoadHrtf01(FILE *f, ALuint deviceRate)
{
const ALubyte maxDelay = HRTF_HISTORY_LENGTH-1;
struct Hrtf *Hrtf = NULL;
ALboolean failed = AL_FALSE;
ALuint rate = 0, irCount = 0;
ALubyte irSize = 0, evCount = 0;
ALubyte *azCount = NULL;
ALushort *evOffset = NULL;
ALshort *coeffs = NULL;
ALubyte *delays = NULL;
ALuint i, j;
rate = fgetc(f);
rate |= fgetc(f)<<8;
rate |= fgetc(f)<<16;
rate |= fgetc(f)<<24;
irSize = fgetc(f);
evCount = fgetc(f);
if(rate != deviceRate)
{
ERR("HRIR rate does not match device rate: rate=%d (%d)\n",
rate, deviceRate);
failed = AL_TRUE;
}
if(irSize < MIN_IR_SIZE || irSize > MAX_IR_SIZE || (irSize%MOD_IR_SIZE))
{
ERR("Unsupported HRIR size: irSize=%d (%d to %d by %d)\n",
irSize, MIN_IR_SIZE, MAX_IR_SIZE, MOD_IR_SIZE);
failed = AL_TRUE;
}
if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT)
{
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
evCount, MIN_EV_COUNT, MAX_EV_COUNT);
failed = AL_TRUE;
}
if(failed)
return NULL;
azCount = malloc(sizeof(azCount[0])*evCount);
evOffset = malloc(sizeof(evOffset[0])*evCount);
if(azCount == NULL || evOffset == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
if(!failed)
{
for(i = 0;i < evCount;i++)
{
azCount[i] = fgetc(f);
if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT)
{
ERR("Unsupported azimuth count: azCount[%d]=%d (%d to %d)\n",
i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT);
failed = AL_TRUE;
}
}
}
if(!failed)
{
evOffset[0] = 0;
irCount = azCount[0];
for(i = 1;i < evCount;i++)
{
evOffset[i] = evOffset[i-1] + azCount[i-1];
irCount += azCount[i];
}
coeffs = malloc(sizeof(coeffs[0])*irSize*irCount);
delays = malloc(sizeof(delays[0])*irCount);
if(coeffs == NULL || delays == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
for(i = 0;i < irCount*irSize;i+=irSize)
{
for(j = 0;j < irSize;j++)
{
ALshort coeff;
coeff = fgetc(f);
coeff |= fgetc(f)<<8;
coeffs[i+j] = coeff;
}
}
for(i = 0;i < irCount;i++)
{
delays[i] = fgetc(f);
if(delays[i] > maxDelay)
{
ERR("Invalid delays[%d]: %d (%d)\n", i, delays[i], maxDelay);
failed = AL_TRUE;
}
}
if(feof(f))
{
ERR("Premature end of data\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf = malloc(sizeof(struct Hrtf));
if(Hrtf == NULL)
{
ERR("Out of memory.\n");
failed = AL_TRUE;
}
}
if(!failed)
{
Hrtf->sampleRate = rate;
Hrtf->irSize = irSize;
Hrtf->evCount = evCount;
Hrtf->azCount = azCount;
Hrtf->evOffset = evOffset;
Hrtf->coeffs = coeffs;
Hrtf->delays = delays;
Hrtf->next = NULL;
return Hrtf;
}
free(azCount);
free(evOffset);
free(coeffs);
free(delays);
return NULL;
}
static struct Hrtf *LoadHrtf(ALuint deviceRate)
{
const char *fnamelist = "default-%r.mhr";
ConfigValueStr(NULL, "hrtf_tables", &fnamelist);
while(*fnamelist != '\0')
{
struct Hrtf *Hrtf = NULL;
char fname[PATH_MAX];
const char *next;
ALchar magic[8];
ALuint i;
FILE *f;
i = 0;
while(isspace(*fnamelist) || *fnamelist == ',')
fnamelist++;
next = fnamelist;
while(*(fnamelist=next) != '\0' && *fnamelist != ',')
{
next = strpbrk(fnamelist, "%,");
while(fnamelist != next && *fnamelist && i < sizeof(fname))
fname[i++] = *(fnamelist++);
if(!next || *next == ',')
break;
/* *next == '%' */
next++;
if(*next == 'r')
{
int wrote = snprintf(&fname[i], sizeof(fname)-i, "%u", deviceRate);
i += minu(wrote, sizeof(fname)-i);
next++;
}
else if(*next == '%')
{
if(i < sizeof(fname))
fname[i++] = '%';
next++;
}
else
ERR("Invalid marker '%%%c'\n", *next);
}
i = minu(i, sizeof(fname)-1);
fname[i] = '\0';
while(i > 0 && isspace(fname[i-1]))
i--;
fname[i] = '\0';
if(fname[0] == '\0')
continue;
TRACE("Loading %s...\n", fname);
f = OpenDataFile(fname, "openal/hrtf");
if(f == NULL)
{
ERR("Could not open %s\n", fname);
continue;
}
if(fread(magic, 1, sizeof(magic), f) != sizeof(magic))
ERR("Failed to read header from %s\n", fname);
else
{
if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
{
TRACE("Detected data set format v0\n");
Hrtf = LoadHrtf00(f, deviceRate);
}
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
{
TRACE("Detected data set format v1\n");
Hrtf = LoadHrtf01(f, deviceRate);
}
else
ERR("Invalid header in %s: \"%.8s\"\n", fname, magic);
}
fclose(f);
f = NULL;
if(Hrtf)
{
Hrtf->next = LoadedHrtfs;
LoadedHrtfs = Hrtf;
TRACE("Loaded HRTF support for format: %s %uhz\n",
DevFmtChannelsString(DevFmtStereo), Hrtf->sampleRate);
return Hrtf;
}
ERR("Failed to load %s\n", fname);
}
return NULL;
}
const struct Hrtf *GetHrtf(enum DevFmtChannels chans, ALCuint srate)
{
if(chans == DevFmtStereo)
{
struct Hrtf *Hrtf = LoadedHrtfs;
while(Hrtf != NULL)
{
if(srate == Hrtf->sampleRate)
return Hrtf;
Hrtf = Hrtf->next;
}
Hrtf = LoadHrtf(srate);
if(Hrtf != NULL)
return Hrtf;
}
ERR("Incompatible format: %s %uhz\n", DevFmtChannelsString(chans), srate);
return NULL;
}
ALCboolean FindHrtfFormat(enum DevFmtChannels *chans, ALCuint *srate)
{
const struct Hrtf *hrtf = LoadedHrtfs;
while(hrtf != NULL)
{
if(*srate == hrtf->sampleRate)
break;
hrtf = hrtf->next;
}
if(hrtf == NULL)
{
hrtf = LoadHrtf(*srate);
if(hrtf == NULL) return ALC_FALSE;
}
*chans = DevFmtStereo;
*srate = hrtf->sampleRate;
return ALC_TRUE;
}
void FreeHrtfs(void)
{
struct Hrtf *Hrtf = NULL;
while((Hrtf=LoadedHrtfs) != NULL)
{
LoadedHrtfs = Hrtf->next;
free((void*)Hrtf->azCount);
free((void*)Hrtf->evOffset);
free((void*)Hrtf->coeffs);
free((void*)Hrtf->delays);
free(Hrtf);
}
}
ALuint GetHrtfIrSize (const struct Hrtf *Hrtf)
{
return Hrtf->irSize;
}