Chris Robinson 4b153dade8 Allow sources to play while alcSuspendContext is in effect
This appears to be how Creative's Windows drivers handle it, and is necessary
for at least the Windows version of UT2k4 (otherwise it tries to play a source
while suspended, checks and sees it's stopped, then kills it before it's given
a chance to start playing).

Consequently, the internal properties it gets mixed with are determined by what
the source properties are at the time of the play call, and the listener
properties at the time of the suspend call.

This does not change alDeferUpdatesSOFT, which will still hold the play state
change until alProcessUpdatesSOFT.
2016-08-26 21:19:38 -07:00

926 lines
28 KiB
C

#ifndef AL_MAIN_H
#define AL_MAIN_H
#include <string.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <math.h>
#include <limits.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#if defined(_WIN64)
#define SZFMT "%I64u"
#elif defined(_WIN32)
#define SZFMT "%u"
#else
#define SZFMT "%zu"
#endif
#include "static_assert.h"
#include "align.h"
#include "atomic.h"
#include "uintmap.h"
#include "vector.h"
#include "alstring.h"
#include "almalloc.h"
#include "threads.h"
#include "hrtf.h"
#ifndef ALC_SOFT_device_clock
#define ALC_SOFT_device_clock 1
typedef int64_t ALCint64SOFT;
typedef uint64_t ALCuint64SOFT;
#define ALC_DEVICE_CLOCK_SOFT 0x1600
#define ALC_DEVICE_LATENCY_SOFT 0x1601
#define ALC_DEVICE_CLOCK_LATENCY_SOFT 0x1602
typedef void (ALC_APIENTRY*LPALCGETINTEGER64VSOFT)(ALCdevice *device, ALCenum pname, ALsizei size, ALCint64SOFT *values);
#ifdef AL_ALEXT_PROTOTYPES
ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALsizei size, ALCint64SOFT *values);
#endif
#endif
#ifndef AL_SOFT_buffer_samples2
#define AL_SOFT_buffer_samples2 1
/* Channel configurations */
#define AL_MONO_SOFT 0x1500
#define AL_STEREO_SOFT 0x1501
#define AL_REAR_SOFT 0x1502
#define AL_QUAD_SOFT 0x1503
#define AL_5POINT1_SOFT 0x1504
#define AL_6POINT1_SOFT 0x1505
#define AL_7POINT1_SOFT 0x1506
#define AL_BFORMAT2D_SOFT 0x1507
#define AL_BFORMAT3D_SOFT 0x1508
/* Sample types */
#define AL_BYTE_SOFT 0x1400
#define AL_UNSIGNED_BYTE_SOFT 0x1401
#define AL_SHORT_SOFT 0x1402
#define AL_UNSIGNED_SHORT_SOFT 0x1403
#define AL_INT_SOFT 0x1404
#define AL_UNSIGNED_INT_SOFT 0x1405
#define AL_FLOAT_SOFT 0x1406
#define AL_DOUBLE_SOFT 0x1407
#define AL_BYTE3_SOFT 0x1408
#define AL_UNSIGNED_BYTE3_SOFT 0x1409
#define AL_MULAW_SOFT 0x140A
/* Storage formats */
#define AL_MONO8_SOFT 0x1100
#define AL_MONO16_SOFT 0x1101
#define AL_MONO32F_SOFT 0x10010
#define AL_STEREO8_SOFT 0x1102
#define AL_STEREO16_SOFT 0x1103
#define AL_STEREO32F_SOFT 0x10011
#define AL_QUAD8_SOFT 0x1204
#define AL_QUAD16_SOFT 0x1205
#define AL_QUAD32F_SOFT 0x1206
#define AL_REAR8_SOFT 0x1207
#define AL_REAR16_SOFT 0x1208
#define AL_REAR32F_SOFT 0x1209
#define AL_5POINT1_8_SOFT 0x120A
#define AL_5POINT1_16_SOFT 0x120B
#define AL_5POINT1_32F_SOFT 0x120C
#define AL_6POINT1_8_SOFT 0x120D
#define AL_6POINT1_16_SOFT 0x120E
#define AL_6POINT1_32F_SOFT 0x120F
#define AL_7POINT1_8_SOFT 0x1210
#define AL_7POINT1_16_SOFT 0x1211
#define AL_7POINT1_32F_SOFT 0x1212
#define AL_BFORMAT2D_8_SOFT 0x20021
#define AL_BFORMAT2D_16_SOFT 0x20022
#define AL_BFORMAT2D_32F_SOFT 0x20023
#define AL_BFORMAT3D_8_SOFT 0x20031
#define AL_BFORMAT3D_16_SOFT 0x20032
#define AL_BFORMAT3D_32F_SOFT 0x20033
/* Buffer attributes */
#define AL_INTERNAL_FORMAT_SOFT 0x2008
#define AL_BYTE_LENGTH_SOFT 0x2009
#define AL_SAMPLE_LENGTH_SOFT 0x200A
#define AL_SEC_LENGTH_SOFT 0x200B
#if 0
typedef void (AL_APIENTRY*LPALBUFFERSAMPLESSOFT)(ALuint,ALuint,ALenum,ALsizei,ALenum,ALenum,const ALvoid*);
typedef void (AL_APIENTRY*LPALGETBUFFERSAMPLESSOFT)(ALuint,ALsizei,ALsizei,ALenum,ALenum,ALvoid*);
typedef ALboolean (AL_APIENTRY*LPALISBUFFERFORMATSUPPORTEDSOFT)(ALenum);
#ifdef AL_ALEXT_PROTOTYPES
AL_API void AL_APIENTRY alBufferSamplesSOFT(ALuint buffer, ALuint samplerate, ALenum internalformat, ALsizei samples, ALenum channels, ALenum type, const ALvoid *data);
AL_API void AL_APIENTRY alGetBufferSamplesSOFT(ALuint buffer, ALsizei offset, ALsizei samples, ALenum channels, ALenum type, ALvoid *data);
AL_API ALboolean AL_APIENTRY alIsBufferFormatSupportedSOFT(ALenum format);
#endif
#endif
#endif
typedef ALint64SOFT ALint64;
typedef ALuint64SOFT ALuint64;
#ifndef U64
#if defined(_MSC_VER)
#define U64(x) ((ALuint64)(x##ui64))
#elif SIZEOF_LONG == 8
#define U64(x) ((ALuint64)(x##ul))
#elif SIZEOF_LONG_LONG == 8
#define U64(x) ((ALuint64)(x##ull))
#endif
#endif
#ifndef UINT64_MAX
#define UINT64_MAX U64(18446744073709551615)
#endif
#ifndef UNUSED
#if defined(__cplusplus)
#define UNUSED(x)
#elif defined(__GNUC__)
#define UNUSED(x) UNUSED_##x __attribute__((unused))
#elif defined(__LCLINT__)
#define UNUSED(x) /*@unused@*/ x
#else
#define UNUSED(x) x
#endif
#endif
#ifdef __GNUC__
#define DECL_CONST __attribute__((const))
#define DECL_FORMAT(x, y, z) __attribute__((format(x, (y), (z))))
#else
#define DECL_CONST
#define DECL_FORMAT(x, y, z)
#endif
#if defined(__GNUC__) && defined(__i386__)
/* force_align_arg_pointer is required for proper function arguments aligning
* when SSE code is used. Some systems (Windows, QNX) do not guarantee our
* thread functions will be properly aligned on the stack, even though GCC may
* generate code with the assumption that it is. */
#define FORCE_ALIGN __attribute__((force_align_arg_pointer))
#else
#define FORCE_ALIGN
#endif
#ifdef HAVE_C99_VLA
#define DECL_VLA(T, _name, _size) T _name[(_size)]
#else
#define DECL_VLA(T, _name, _size) T *_name = alloca((_size) * sizeof(T))
#endif
#ifndef PATH_MAX
#ifdef MAX_PATH
#define PATH_MAX MAX_PATH
#else
#define PATH_MAX 4096
#endif
#endif
static const union {
ALuint u;
ALubyte b[sizeof(ALuint)];
} EndianTest = { 1 };
#define IS_LITTLE_ENDIAN (EndianTest.b[0] == 1)
#define COUNTOF(x) (sizeof((x))/sizeof((x)[0]))
#define DERIVE_FROM_TYPE(t) t t##_parent
#define STATIC_CAST(to, obj) (&(obj)->to##_parent)
#ifdef __GNUC__
#define STATIC_UPCAST(to, from, obj) __extension__({ \
static_assert(__builtin_types_compatible_p(from, __typeof(*(obj))), \
"Invalid upcast object from type"); \
(to*)((char*)(obj) - offsetof(to, from##_parent)); \
})
#else
#define STATIC_UPCAST(to, from, obj) ((to*)((char*)(obj) - offsetof(to, from##_parent)))
#endif
#define DECLARE_FORWARD(T1, T2, rettype, func) \
rettype T1##_##func(T1 *obj) \
{ return T2##_##func(STATIC_CAST(T2, obj)); }
#define DECLARE_FORWARD1(T1, T2, rettype, func, argtype1) \
rettype T1##_##func(T1 *obj, argtype1 a) \
{ return T2##_##func(STATIC_CAST(T2, obj), a); }
#define DECLARE_FORWARD2(T1, T2, rettype, func, argtype1, argtype2) \
rettype T1##_##func(T1 *obj, argtype1 a, argtype2 b) \
{ return T2##_##func(STATIC_CAST(T2, obj), a, b); }
#define DECLARE_FORWARD3(T1, T2, rettype, func, argtype1, argtype2, argtype3) \
rettype T1##_##func(T1 *obj, argtype1 a, argtype2 b, argtype3 c) \
{ return T2##_##func(STATIC_CAST(T2, obj), a, b, c); }
#define GET_VTABLE1(T1) (&(T1##_vtable))
#define GET_VTABLE2(T1, T2) (&(T1##_##T2##_vtable))
#define SET_VTABLE1(T1, obj) ((obj)->vtbl = GET_VTABLE1(T1))
#define SET_VTABLE2(T1, T2, obj) (STATIC_CAST(T2, obj)->vtbl = GET_VTABLE2(T1, T2))
#define DECLARE_THUNK(T1, T2, rettype, func) \
static rettype T1##_##T2##_##func(T2 *obj) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj)); }
#define DECLARE_THUNK1(T1, T2, rettype, func, argtype1) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a); }
#define DECLARE_THUNK2(T1, T2, rettype, func, argtype1, argtype2) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b); }
#define DECLARE_THUNK3(T1, T2, rettype, func, argtype1, argtype2, argtype3) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b, argtype3 c) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b, c); }
#define DECLARE_THUNK4(T1, T2, rettype, func, argtype1, argtype2, argtype3, argtype4) \
static rettype T1##_##T2##_##func(T2 *obj, argtype1 a, argtype2 b, argtype3 c, argtype4 d) \
{ return T1##_##func(STATIC_UPCAST(T1, T2, obj), a, b, c, d); }
#define DECLARE_DEFAULT_ALLOCATORS(T) \
static void* T##_New(size_t size) { return al_malloc(16, size); } \
static void T##_Delete(void *ptr) { al_free(ptr); }
/* Helper to extract an argument list for VCALL. Not used directly. */
#define EXTRACT_VCALL_ARGS(...) __VA_ARGS__))
/* Call a "virtual" method on an object, with arguments. */
#define V(obj, func) ((obj)->vtbl->func((obj), EXTRACT_VCALL_ARGS
/* Call a "virtual" method on an object, with no arguments. */
#define V0(obj, func) ((obj)->vtbl->func((obj) EXTRACT_VCALL_ARGS
#define DELETE_OBJ(obj) do { \
if((obj) != NULL) \
{ \
V0((obj),Destruct)(); \
V0((obj),Delete)(); \
} \
} while(0)
#define EXTRACT_NEW_ARGS(...) __VA_ARGS__); \
} \
} while(0)
#define NEW_OBJ(_res, T) do { \
_res = T##_New(sizeof(T)); \
if(_res) \
{ \
memset(_res, 0, sizeof(T)); \
T##_Construct(_res, EXTRACT_NEW_ARGS
#define NEW_OBJ0(_res, T) do { \
_res = T##_New(sizeof(T)); \
if(_res) \
{ \
memset(_res, 0, sizeof(T)); \
T##_Construct(_res EXTRACT_NEW_ARGS
#ifdef __cplusplus
extern "C" {
#endif
struct Hrtf;
#define DEFAULT_OUTPUT_RATE (44100)
#define MIN_OUTPUT_RATE (8000)
/* Find the next power-of-2 for non-power-of-2 numbers. */
inline ALuint NextPowerOf2(ALuint value)
{
if(value > 0)
{
value--;
value |= value>>1;
value |= value>>2;
value |= value>>4;
value |= value>>8;
value |= value>>16;
}
return value+1;
}
/* Fast float-to-int conversion. Assumes the FPU is already in round-to-zero
* mode. */
inline ALint fastf2i(ALfloat f)
{
#ifdef HAVE_LRINTF
return lrintf(f);
#elif defined(_MSC_VER) && defined(_M_IX86)
ALint i;
__asm fld f
__asm fistp i
return i;
#else
return (ALint)f;
#endif
}
/* Fast float-to-uint conversion. Assumes the FPU is already in round-to-zero
* mode. */
inline ALuint fastf2u(ALfloat f)
{ return fastf2i(f); }
enum DevProbe {
ALL_DEVICE_PROBE,
CAPTURE_DEVICE_PROBE
};
typedef struct {
ALCenum (*OpenPlayback)(ALCdevice*, const ALCchar*);
void (*ClosePlayback)(ALCdevice*);
ALCboolean (*ResetPlayback)(ALCdevice*);
ALCboolean (*StartPlayback)(ALCdevice*);
void (*StopPlayback)(ALCdevice*);
ALCenum (*OpenCapture)(ALCdevice*, const ALCchar*);
void (*CloseCapture)(ALCdevice*);
void (*StartCapture)(ALCdevice*);
void (*StopCapture)(ALCdevice*);
ALCenum (*CaptureSamples)(ALCdevice*, void*, ALCuint);
ALCuint (*AvailableSamples)(ALCdevice*);
} BackendFuncs;
ALCboolean alc_sndio_init(BackendFuncs *func_list);
void alc_sndio_deinit(void);
void alc_sndio_probe(enum DevProbe type);
ALCboolean alc_ca_init(BackendFuncs *func_list);
void alc_ca_deinit(void);
void alc_ca_probe(enum DevProbe type);
ALCboolean alc_opensl_init(BackendFuncs *func_list);
void alc_opensl_deinit(void);
void alc_opensl_probe(enum DevProbe type);
ALCboolean alc_qsa_init(BackendFuncs *func_list);
void alc_qsa_deinit(void);
void alc_qsa_probe(enum DevProbe type);
struct ALCbackend;
enum DistanceModel {
InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
InverseDistance = AL_INVERSE_DISTANCE,
LinearDistance = AL_LINEAR_DISTANCE,
ExponentDistance = AL_EXPONENT_DISTANCE,
DisableDistance = AL_NONE,
DefaultDistanceModel = InverseDistanceClamped
};
enum Channel {
FrontLeft = 0,
FrontRight,
FrontCenter,
LFE,
BackLeft,
BackRight,
BackCenter,
SideLeft,
SideRight,
UpperFrontLeft,
UpperFrontRight,
UpperBackLeft,
UpperBackRight,
LowerFrontLeft,
LowerFrontRight,
LowerBackLeft,
LowerBackRight,
Aux0,
Aux1,
Aux2,
Aux3,
Aux4,
Aux5,
Aux6,
Aux7,
Aux8,
Aux9,
Aux10,
Aux11,
Aux12,
Aux13,
Aux14,
Aux15,
InvalidChannel
};
/* Device formats */
enum DevFmtType {
DevFmtByte = ALC_BYTE_SOFT,
DevFmtUByte = ALC_UNSIGNED_BYTE_SOFT,
DevFmtShort = ALC_SHORT_SOFT,
DevFmtUShort = ALC_UNSIGNED_SHORT_SOFT,
DevFmtInt = ALC_INT_SOFT,
DevFmtUInt = ALC_UNSIGNED_INT_SOFT,
DevFmtFloat = ALC_FLOAT_SOFT,
DevFmtTypeDefault = DevFmtFloat
};
enum DevFmtChannels {
DevFmtMono = ALC_MONO_SOFT,
DevFmtStereo = ALC_STEREO_SOFT,
DevFmtQuad = ALC_QUAD_SOFT,
DevFmtX51 = ALC_5POINT1_SOFT,
DevFmtX61 = ALC_6POINT1_SOFT,
DevFmtX71 = ALC_7POINT1_SOFT,
/* Similar to 5.1, except using rear channels instead of sides */
DevFmtX51Rear = 0x80000000,
/* Ambisonic formats should be kept together */
DevFmtAmbi1,
DevFmtAmbi2,
DevFmtAmbi3,
DevFmtChannelsDefault = DevFmtStereo
};
#define MAX_OUTPUT_CHANNELS (16)
ALuint BytesFromDevFmt(enum DevFmtType type) DECL_CONST;
ALuint ChannelsFromDevFmt(enum DevFmtChannels chans) DECL_CONST;
inline ALuint FrameSizeFromDevFmt(enum DevFmtChannels chans, enum DevFmtType type)
{
return ChannelsFromDevFmt(chans) * BytesFromDevFmt(type);
}
enum AmbiFormat {
AmbiFormat_FuMa, /* FuMa channel order and normalization */
AmbiFormat_ACN_SN3D, /* ACN channel order and SN3D normalization */
AmbiFormat_ACN_N3D, /* ACN channel order and N3D normalization */
AmbiFormat_Default = AmbiFormat_ACN_SN3D
};
extern const struct EffectList {
const char *name;
int type;
const char *ename;
ALenum val;
} EffectList[];
enum DeviceType {
Playback,
Capture,
Loopback
};
enum RenderMode {
NormalRender,
StereoPair,
HrtfRender
};
/* The maximum number of Ambisonics coefficients. For a given order (o), the
* size needed will be (o+1)**2, thus zero-order has 1, first-order has 4,
* second-order has 9, third-order has 16, and fourth-order has 25.
*/
#define MAX_AMBI_ORDER 3
#define MAX_AMBI_COEFFS ((MAX_AMBI_ORDER+1) * (MAX_AMBI_ORDER+1))
/* A bitmask of ambisonic channels with height information. If none of these
* channels are used/needed, there's no height (e.g. with most surround sound
* speaker setups). This only specifies up to 4th order, which is the highest
* order a 32-bit mask value can specify (a 64-bit mask could handle up to 7th
* order). This is ACN ordering, with bit 0 being ACN 0, etc.
*/
#define AMBI_PERIPHONIC_MASK (0xfe7ce4)
/* The maximum number of Ambisonic coefficients for 2D (non-periphonic)
* representation. This is 2 per each order above zero-order, plus 1 for zero-
* order. Or simply, o*2 + 1.
*/
#define MAX_AMBI2D_COEFFS (MAX_AMBI_ORDER*2 + 1)
typedef ALfloat ChannelConfig[MAX_AMBI_COEFFS];
typedef struct BFChannelConfig {
ALfloat Scale;
ALuint Index;
} BFChannelConfig;
typedef union AmbiConfig {
/* Ambisonic coefficients for mixing to the dry buffer. */
ChannelConfig Coeffs[MAX_OUTPUT_CHANNELS];
/* Coefficient channel mapping for mixing to the dry buffer. */
BFChannelConfig Map[MAX_OUTPUT_CHANNELS];
} AmbiConfig;
#define HRTF_HISTORY_BITS (6)
#define HRTF_HISTORY_LENGTH (1<<HRTF_HISTORY_BITS)
#define HRTF_HISTORY_MASK (HRTF_HISTORY_LENGTH-1)
typedef struct HrtfState {
alignas(16) ALfloat History[HRTF_HISTORY_LENGTH];
alignas(16) ALfloat Values[HRIR_LENGTH][2];
} HrtfState;
typedef struct HrtfParams {
alignas(16) ALfloat Coeffs[HRIR_LENGTH][2];
ALuint Delay[2];
} HrtfParams;
/* Size for temporary storage of buffer data, in ALfloats. Larger values need
* more memory, while smaller values may need more iterations. The value needs
* to be a sensible size, however, as it constrains the max stepping value used
* for mixing, as well as the maximum number of samples per mixing iteration.
*/
#define BUFFERSIZE (2048u)
struct ALCdevice_struct
{
RefCount ref;
ALCboolean Connected;
enum DeviceType Type;
ALuint Frequency;
ALuint UpdateSize;
ALuint NumUpdates;
enum DevFmtChannels FmtChans;
enum DevFmtType FmtType;
ALboolean IsHeadphones;
/* For DevFmtAmbi* output only, specifies the channel order and
* normalization.
*/
enum AmbiFormat AmbiFmt;
al_string DeviceName;
ATOMIC(ALCenum) LastError;
// Maximum number of sources that can be created
ALuint SourcesMax;
// Maximum number of slots that can be created
ALuint AuxiliaryEffectSlotMax;
ALCuint NumMonoSources;
ALCuint NumStereoSources;
ALuint NumAuxSends;
// Map of Buffers for this device
UIntMap BufferMap;
// Map of Effects for this device
UIntMap EffectMap;
// Map of Filters for this device
UIntMap FilterMap;
/* HRTF filter tables */
struct {
vector_HrtfEntry List;
al_string Name;
ALCenum Status;
const struct Hrtf *Handle;
/* HRTF filter state for dry buffer content */
alignas(16) ALfloat Values[4][HRIR_LENGTH][2];
alignas(16) ALfloat Coeffs[4][HRIR_LENGTH][2];
ALuint Offset;
ALuint IrSize;
} Hrtf;
/* UHJ encoder state */
struct Uhj2Encoder *Uhj_Encoder;
/* High quality Ambisonic decoder */
struct BFormatDec *AmbiDecoder;
/* Stereo-to-binaural filter */
struct bs2b *Bs2b;
/* First-order ambisonic upsampler for higher-order output */
struct AmbiUpsampler *AmbiUp;
/* Rendering mode. */
enum RenderMode Render_Mode;
// Device flags
ALuint Flags;
ALuint64 ClockBase;
ALuint SamplesDone;
/* Temp storage used for each source when mixing. */
alignas(16) ALfloat SourceData[BUFFERSIZE];
alignas(16) ALfloat ResampledData[BUFFERSIZE];
alignas(16) ALfloat FilteredData[BUFFERSIZE];
/* The "dry" path corresponds to the main output. */
struct {
AmbiConfig Ambi;
/* Number of coefficients in each Ambi.Coeffs to mix together (4 for
* first-order, 9 for second-order, etc). If the count is 0, Ambi.Map
* is used instead to map each output to a coefficient index.
*/
ALuint CoeffCount;
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} Dry;
/* First-order ambisonics output, to be upsampled to the dry buffer if different. */
struct {
AmbiConfig Ambi;
/* Will only be 4 or 0. */
ALuint CoeffCount;
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} FOAOut;
/* "Real" output, which will be written to the device buffer. May alias the
* dry buffer.
*/
struct {
enum Channel ChannelName[MAX_OUTPUT_CHANNELS];
ALfloat (*Buffer)[BUFFERSIZE];
ALuint NumChannels;
} RealOut;
/* Running count of the mixer invocations, in 31.1 fixed point. This
* actually increments *twice* when mixing, first at the start and then at
* the end, so the bottom bit indicates if the device is currently mixing
* and the upper bits indicates how many mixes have been done.
*/
RefCount MixCount;
/* Default effect slot */
struct ALeffectslot *DefaultSlot;
// Contexts created on this device
ATOMIC(ALCcontext*) ContextList;
almtx_t BackendLock;
struct ALCbackend *Backend;
void *ExtraData; // For the backend's use
ALCdevice *volatile next;
/* Memory space used by the default slot (Playback devices only) */
alignas(16) ALCbyte _slot_mem[];
};
// Frequency was requested by the app or config file
#define DEVICE_FREQUENCY_REQUEST (1<<1)
// Channel configuration was requested by the config file
#define DEVICE_CHANNELS_REQUEST (1<<2)
// Sample type was requested by the config file
#define DEVICE_SAMPLE_TYPE_REQUEST (1<<3)
// Specifies if the DSP is paused at user request
#define DEVICE_PAUSED (1<<30)
// Specifies if the device is currently running
#define DEVICE_RUNNING (1<<31)
/* Nanosecond resolution for the device clock time. */
#define DEVICE_CLOCK_RES U64(1000000000)
/* Must be less than 15 characters (16 including terminating null) for
* compatibility with pthread_setname_np limitations. */
#define MIXER_THREAD_NAME "alsoft-mixer"
#define RECORD_THREAD_NAME "alsoft-record"
struct ALCcontext_struct {
RefCount ref;
struct ALlistener *Listener;
UIntMap SourceMap;
UIntMap EffectSlotMap;
ATOMIC(ALenum) LastError;
volatile enum DistanceModel DistanceModel;
volatile ALboolean SourceDistanceModel;
volatile ALfloat DopplerFactor;
volatile ALfloat DopplerVelocity;
volatile ALfloat SpeedOfSound;
ATOMIC(ALenum) DeferUpdates;
RWLock PropLock;
/* Counter for the pre-mixing updates, in 31.1 fixed point (lowest bit
* indicates if updates are currently happening).
*/
RefCount UpdateCount;
ATOMIC(ALenum) HoldUpdates;
struct ALvoice *Voices;
ALsizei VoiceCount;
ALsizei MaxVoices;
ATOMIC(struct ALeffectslot*) ActiveAuxSlotList;
ALCdevice *Device;
const ALCchar *ExtensionList;
ALCcontext *volatile next;
/* Memory space used by the listener */
alignas(16) ALCbyte _listener_mem[];
};
ALCcontext *GetContextRef(void);
void ALCcontext_IncRef(ALCcontext *context);
void ALCcontext_DecRef(ALCcontext *context);
void AppendAllDevicesList(const ALCchar *name);
void AppendCaptureDeviceList(const ALCchar *name);
void ALCdevice_Lock(ALCdevice *device);
void ALCdevice_Unlock(ALCdevice *device);
void ALCcontext_DeferUpdates(ALCcontext *context, ALenum type);
void ALCcontext_ProcessUpdates(ALCcontext *context);
inline void LockContext(ALCcontext *context)
{ ALCdevice_Lock(context->Device); }
inline void UnlockContext(ALCcontext *context)
{ ALCdevice_Unlock(context->Device); }
enum {
DeferOff = AL_FALSE,
DeferAll,
DeferAllowPlay
};
typedef struct {
#ifdef HAVE_FENV_H
DERIVE_FROM_TYPE(fenv_t);
#else
int state;
#endif
#ifdef HAVE_SSE
int sse_state;
#endif
} FPUCtl;
void SetMixerFPUMode(FPUCtl *ctl);
void RestoreFPUMode(const FPUCtl *ctl);
typedef struct ll_ringbuffer ll_ringbuffer_t;
typedef struct ll_ringbuffer_data {
char *buf;
size_t len;
} ll_ringbuffer_data_t;
ll_ringbuffer_t *ll_ringbuffer_create(size_t sz, size_t elem_sz);
void ll_ringbuffer_free(ll_ringbuffer_t *rb);
void ll_ringbuffer_get_read_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec);
void ll_ringbuffer_get_write_vector(const ll_ringbuffer_t *rb, ll_ringbuffer_data_t *vec);
size_t ll_ringbuffer_read(ll_ringbuffer_t *rb, char *dest, size_t cnt);
size_t ll_ringbuffer_peek(ll_ringbuffer_t *rb, char *dest, size_t cnt);
void ll_ringbuffer_read_advance(ll_ringbuffer_t *rb, size_t cnt);
size_t ll_ringbuffer_read_space(const ll_ringbuffer_t *rb);
int ll_ringbuffer_mlock(ll_ringbuffer_t *rb);
void ll_ringbuffer_reset(ll_ringbuffer_t *rb);
size_t ll_ringbuffer_write(ll_ringbuffer_t *rb, const char *src, size_t cnt);
void ll_ringbuffer_write_advance(ll_ringbuffer_t *rb, size_t cnt);
size_t ll_ringbuffer_write_space(const ll_ringbuffer_t *rb);
void ReadALConfig(void);
void FreeALConfig(void);
int ConfigValueExists(const char *devName, const char *blockName, const char *keyName);
const char *GetConfigValue(const char *devName, const char *blockName, const char *keyName, const char *def);
int GetConfigValueBool(const char *devName, const char *blockName, const char *keyName, int def);
int ConfigValueStr(const char *devName, const char *blockName, const char *keyName, const char **ret);
int ConfigValueInt(const char *devName, const char *blockName, const char *keyName, int *ret);
int ConfigValueUInt(const char *devName, const char *blockName, const char *keyName, unsigned int *ret);
int ConfigValueFloat(const char *devName, const char *blockName, const char *keyName, float *ret);
int ConfigValueBool(const char *devName, const char *blockName, const char *keyName, int *ret);
void SetRTPriority(void);
void SetDefaultChannelOrder(ALCdevice *device);
void SetDefaultWFXChannelOrder(ALCdevice *device);
const ALCchar *DevFmtTypeString(enum DevFmtType type) DECL_CONST;
const ALCchar *DevFmtChannelsString(enum DevFmtChannels chans) DECL_CONST;
/**
* GetChannelIdxByName
*
* Returns the index for the given channel name (e.g. FrontCenter), or -1 if it
* doesn't exist.
*/
inline ALint GetChannelIndex(const enum Channel names[MAX_OUTPUT_CHANNELS], enum Channel chan)
{
ALint i;
for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
{
if(names[i] == chan)
return i;
}
return -1;
}
#define GetChannelIdxByName(x, c) GetChannelIndex((x).ChannelName, (c))
extern FILE *LogFile;
#if defined(__GNUC__) && !defined(_WIN32) && !defined(IN_IDE_PARSER)
#define AL_PRINT(T, MSG, ...) fprintf(LogFile, "AL lib: %s %s: "MSG, T, __FUNCTION__ , ## __VA_ARGS__)
#else
void al_print(const char *type, const char *func, const char *fmt, ...) DECL_FORMAT(printf, 3,4);
#define AL_PRINT(T, ...) al_print((T), __FUNCTION__, __VA_ARGS__)
#endif
enum LogLevel {
NoLog,
LogError,
LogWarning,
LogTrace,
LogRef
};
extern enum LogLevel LogLevel;
#define TRACEREF(...) do { \
if(LogLevel >= LogRef) \
AL_PRINT("(--)", __VA_ARGS__); \
} while(0)
#define TRACE(...) do { \
if(LogLevel >= LogTrace) \
AL_PRINT("(II)", __VA_ARGS__); \
} while(0)
#define WARN(...) do { \
if(LogLevel >= LogWarning) \
AL_PRINT("(WW)", __VA_ARGS__); \
} while(0)
#define ERR(...) do { \
if(LogLevel >= LogError) \
AL_PRINT("(EE)", __VA_ARGS__); \
} while(0)
extern ALint RTPrioLevel;
extern ALuint CPUCapFlags;
enum {
CPU_CAP_SSE = 1<<0,
CPU_CAP_SSE2 = 1<<1,
CPU_CAP_SSE3 = 1<<2,
CPU_CAP_SSE4_1 = 1<<3,
CPU_CAP_NEON = 1<<4,
};
void FillCPUCaps(ALuint capfilter);
vector_al_string SearchDataFiles(const char *match, const char *subdir);
/* Small hack to use a pointer-to-array type as a normal argument type.
* Shouldn't be used directly. */
typedef ALfloat ALfloatBUFFERSIZE[BUFFERSIZE];
#ifdef __cplusplus
}
#endif
#endif