273 lines
7.6 KiB
C
273 lines
7.6 KiB
C
#ifndef _ALU_H_
|
|
#define _ALU_H_
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#ifdef HAVE_FLOAT_H
|
|
#include <float.h>
|
|
#endif
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#include "alMain.h"
|
|
#include "alBuffer.h"
|
|
#include "alFilter.h"
|
|
|
|
#include "hrtf.h"
|
|
#include "align.h"
|
|
|
|
|
|
#define F_PI (3.14159265358979323846f)
|
|
#define F_PI_2 (1.57079632679489661923f)
|
|
#define F_TAU (6.28318530717958647692f)
|
|
|
|
#ifndef FLT_EPSILON
|
|
#define FLT_EPSILON (1.19209290e-07f)
|
|
#endif
|
|
|
|
#define DEG2RAD(x) ((ALfloat)(x) * (F_PI/180.0f))
|
|
#define RAD2DEG(x) ((ALfloat)(x) * (180.0f/F_PI))
|
|
|
|
|
|
#define MAX_PITCH (10)
|
|
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
struct ALsource;
|
|
struct ALvoice;
|
|
|
|
|
|
typedef union aluVector {
|
|
alignas(16) ALfloat v[4];
|
|
} aluVector;
|
|
|
|
inline void aluVectorSet(aluVector *vector, ALfloat x, ALfloat y, ALfloat z, ALfloat w)
|
|
{
|
|
vector->v[0] = x;
|
|
vector->v[1] = y;
|
|
vector->v[2] = z;
|
|
vector->v[3] = w;
|
|
}
|
|
|
|
|
|
typedef union aluMatrix {
|
|
alignas(16) ALfloat m[4][4];
|
|
} aluMatrix;
|
|
|
|
inline void aluMatrixSetRow(aluMatrix *matrix, ALuint row,
|
|
ALfloat m0, ALfloat m1, ALfloat m2, ALfloat m3)
|
|
{
|
|
matrix->m[row][0] = m0;
|
|
matrix->m[row][1] = m1;
|
|
matrix->m[row][2] = m2;
|
|
matrix->m[row][3] = m3;
|
|
}
|
|
|
|
inline void aluMatrixSet(aluMatrix *matrix, ALfloat m00, ALfloat m01, ALfloat m02, ALfloat m03,
|
|
ALfloat m10, ALfloat m11, ALfloat m12, ALfloat m13,
|
|
ALfloat m20, ALfloat m21, ALfloat m22, ALfloat m23,
|
|
ALfloat m30, ALfloat m31, ALfloat m32, ALfloat m33)
|
|
{
|
|
aluMatrixSetRow(matrix, 0, m00, m01, m02, m03);
|
|
aluMatrixSetRow(matrix, 1, m10, m11, m12, m13);
|
|
aluMatrixSetRow(matrix, 2, m20, m21, m22, m23);
|
|
aluMatrixSetRow(matrix, 3, m30, m31, m32, m33);
|
|
}
|
|
|
|
|
|
enum ActiveFilters {
|
|
AF_None = 0,
|
|
AF_LowPass = 1,
|
|
AF_HighPass = 2,
|
|
AF_BandPass = AF_LowPass | AF_HighPass
|
|
};
|
|
|
|
|
|
typedef struct MixGains {
|
|
ALfloat Current;
|
|
ALfloat Step;
|
|
ALfloat Target;
|
|
} MixGains;
|
|
|
|
|
|
typedef struct DirectParams {
|
|
ALfloat (*OutBuffer)[BUFFERSIZE];
|
|
ALuint OutChannels;
|
|
|
|
/* If not 'moving', gain/coefficients are set directly without fading. */
|
|
ALboolean Moving;
|
|
/* Stepping counter for gain/coefficient fading. */
|
|
ALuint Counter;
|
|
/* Last direction (relative to listener) and gain of a moving source. */
|
|
aluVector LastDir;
|
|
ALfloat LastGain;
|
|
|
|
struct {
|
|
enum ActiveFilters ActiveType;
|
|
ALfilterState LowPass;
|
|
ALfilterState HighPass;
|
|
} Filters[MAX_INPUT_CHANNELS];
|
|
|
|
struct {
|
|
HrtfParams Params;
|
|
HrtfState State;
|
|
} Hrtf[MAX_INPUT_CHANNELS];
|
|
MixGains Gains[MAX_INPUT_CHANNELS][MAX_OUTPUT_CHANNELS];
|
|
} DirectParams;
|
|
|
|
typedef struct SendParams {
|
|
ALfloat (*OutBuffer)[BUFFERSIZE];
|
|
|
|
ALboolean Moving;
|
|
ALuint Counter;
|
|
|
|
struct {
|
|
enum ActiveFilters ActiveType;
|
|
ALfilterState LowPass;
|
|
ALfilterState HighPass;
|
|
} Filters[MAX_INPUT_CHANNELS];
|
|
|
|
/* Gain control, which applies to all input channels to a single (mono)
|
|
* output buffer. */
|
|
MixGains Gain;
|
|
} SendParams;
|
|
|
|
|
|
typedef const ALfloat* (*ResamplerFunc)(const ALfloat *src, ALuint frac, ALuint increment,
|
|
ALfloat *restrict dst, ALuint dstlen);
|
|
|
|
typedef void (*MixerFunc)(const ALfloat *data, ALuint OutChans,
|
|
ALfloat (*restrict OutBuffer)[BUFFERSIZE], struct MixGains *Gains,
|
|
ALuint Counter, ALuint OutPos, ALuint BufferSize);
|
|
typedef void (*HrtfMixerFunc)(ALfloat (*restrict OutBuffer)[BUFFERSIZE], const ALfloat *data,
|
|
ALuint Counter, ALuint Offset, ALuint OutPos,
|
|
const ALuint IrSize, const HrtfParams *hrtfparams,
|
|
HrtfState *hrtfstate, ALuint BufferSize);
|
|
|
|
|
|
#define GAIN_SILENCE_THRESHOLD (0.00001f) /* -100dB */
|
|
|
|
#define SPEEDOFSOUNDMETRESPERSEC (343.3f)
|
|
#define AIRABSORBGAINHF (0.99426f) /* -0.05dB */
|
|
|
|
#define FRACTIONBITS (12)
|
|
#define FRACTIONONE (1<<FRACTIONBITS)
|
|
#define FRACTIONMASK (FRACTIONONE-1)
|
|
|
|
|
|
inline ALfloat minf(ALfloat a, ALfloat b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALfloat maxf(ALfloat a, ALfloat b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
|
|
{ return minf(max, maxf(min, val)); }
|
|
|
|
inline ALdouble mind(ALdouble a, ALdouble b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALdouble maxd(ALdouble a, ALdouble b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max)
|
|
{ return mind(max, maxd(min, val)); }
|
|
|
|
inline ALuint minu(ALuint a, ALuint b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALuint maxu(ALuint a, ALuint b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALuint clampu(ALuint val, ALuint min, ALuint max)
|
|
{ return minu(max, maxu(min, val)); }
|
|
|
|
inline ALint mini(ALint a, ALint b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALint maxi(ALint a, ALint b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALint clampi(ALint val, ALint min, ALint max)
|
|
{ return mini(max, maxi(min, val)); }
|
|
|
|
inline ALint64 mini64(ALint64 a, ALint64 b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALint64 maxi64(ALint64 a, ALint64 b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
|
|
{ return mini64(max, maxi64(min, val)); }
|
|
|
|
inline ALuint64 minu64(ALuint64 a, ALuint64 b)
|
|
{ return ((a > b) ? b : a); }
|
|
inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
|
|
{ return ((a > b) ? a : b); }
|
|
inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
|
|
{ return minu64(max, maxu64(min, val)); }
|
|
|
|
|
|
extern alignas(16) ALfloat CubicLUT[FRACTIONONE][4];
|
|
|
|
|
|
inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
|
|
{
|
|
return val1 + (val2-val1)*mu;
|
|
}
|
|
inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALuint frac)
|
|
{
|
|
const ALfloat *k = CubicLUT[frac];
|
|
return k[0]*val0 + k[1]*val1 + k[2]*val2 + k[3]*val3;
|
|
}
|
|
|
|
|
|
void aluInitResamplers(void);
|
|
|
|
ALvoid aluInitPanning(ALCdevice *Device);
|
|
|
|
/**
|
|
* ComputeDirectionalGains
|
|
*
|
|
* Sets channel gains based on a direction. The direction must be a 3-component
|
|
* vector no longer than 1 unit.
|
|
*/
|
|
void ComputeDirectionalGains(const ALCdevice *device, const ALfloat dir[3], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);
|
|
|
|
/**
|
|
* ComputeAngleGains
|
|
*
|
|
* Sets channel gains based on angle and elevation. The angle and elevation
|
|
* parameters are in radians, going right and up respectively.
|
|
*/
|
|
void ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat elevation, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);
|
|
|
|
/**
|
|
* ComputeAmbientGains
|
|
*
|
|
* Sets channel gains for ambient, omni-directional sounds.
|
|
*/
|
|
void ComputeAmbientGains(const ALCdevice *device, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);
|
|
|
|
/**
|
|
* ComputeBFormatGains
|
|
*
|
|
* Sets channel gains for a given (first-order) B-Format channel. The matrix is
|
|
* a 1x4 'slice' of the rotation matrix for a given channel used to orient the
|
|
* coefficients.
|
|
*/
|
|
void ComputeBFormatGains(const ALCdevice *device, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS]);
|
|
|
|
|
|
ALvoid CalcSourceParams(struct ALvoice *voice, const struct ALsource *source, const ALCcontext *ALContext);
|
|
ALvoid CalcNonAttnSourceParams(struct ALvoice *voice, const struct ALsource *source, const ALCcontext *ALContext);
|
|
|
|
ALvoid MixSource(struct ALvoice *voice, struct ALsource *source, ALCdevice *Device, ALuint SamplesToDo);
|
|
|
|
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
|
|
/* Caller must lock the device. */
|
|
ALvoid aluHandleDisconnect(ALCdevice *device);
|
|
|
|
extern ALfloat ConeScale;
|
|
extern ALfloat ZScale;
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|