openal-soft/Alc/bformatdec.c

519 lines
18 KiB
C

#include "config.h"
#include "bformatdec.h"
#include "ambdec.h"
#include "alu.h"
#include "threads.h"
typedef struct BandSplitter {
ALfloat coeff;
ALfloat lp_z1;
ALfloat lp_z2;
ALfloat hp_z1;
} BandSplitter;
static void bandsplit_init(BandSplitter *splitter, ALfloat freq_mult)
{
ALfloat w = freq_mult * F_TAU;
ALfloat cw = cosf(w);
if(cw > FLT_EPSILON)
splitter->coeff = (sinf(w) - 1.0f) / cw;
else
splitter->coeff = cw * -0.5f;
splitter->lp_z1 = 0.0f;
splitter->lp_z2 = 0.0f;
splitter->hp_z1 = 0.0f;
}
static void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout,
const ALfloat *input, ALuint count)
{
ALfloat coeff, d, x;
ALuint i;
coeff = splitter->coeff*0.5f + 0.5f;
for(i = 0;i < count;i++)
{
x = input[i];
d = (x - splitter->lp_z1) * coeff;
x = splitter->lp_z1 + d;
splitter->lp_z1 = x + d;
d = (x - splitter->lp_z2) * coeff;
x = splitter->lp_z2 + d;
splitter->lp_z2 = x + d;
lpout[i] = x;
}
coeff = splitter->coeff;
for(i = 0;i < count;i++)
{
x = input[i];
d = x - coeff*splitter->hp_z1;
x = splitter->hp_z1 + coeff*d;
splitter->hp_z1 = d;
hpout[i] = x - lpout[i];
}
}
static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
};
static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
1.000000000f, /* ACN 0 (W), sqrt(1) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
2.236067978f, /* ACN 4 (V), sqrt(5) */
2.236067978f, /* ACN 5 (T), sqrt(5) */
2.236067978f, /* ACN 6 (R), sqrt(5) */
2.236067978f, /* ACN 7 (S), sqrt(5) */
2.236067978f, /* ACN 8 (U), sqrt(5) */
2.645751311f, /* ACN 9 (Q), sqrt(7) */
2.645751311f, /* ACN 10 (O), sqrt(7) */
2.645751311f, /* ACN 11 (M), sqrt(7) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.645751311f, /* ACN 13 (L), sqrt(7) */
2.645751311f, /* ACN 14 (N), sqrt(7) */
2.645751311f, /* ACN 15 (P), sqrt(7) */
};
static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
1.414213562f, /* ACN 0 (W), sqrt(2) */
1.732050808f, /* ACN 1 (Y), sqrt(3) */
1.732050808f, /* ACN 2 (Z), sqrt(3) */
1.732050808f, /* ACN 3 (X), sqrt(3) */
1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
2.236067978f, /* ACN 6 (R), sqrt(5) */
1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
2.231093404f, /* ACN 11 (M), sqrt(224/45) */
2.645751311f, /* ACN 12 (K), sqrt(7) */
2.231093404f, /* ACN 13 (L), sqrt(224/45) */
1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
2.091650066f, /* ACN 15 (P), sqrt(35/8) */
};
static const ALfloat SquareMatrixHF[4][MAX_AMBI_COEFFS] = {
{ 0.353553f, 0.204094f, 0.0f, 0.204094f },
{ 0.353553f, -0.204094f, 0.0f, 0.204094f },
{ 0.353553f, 0.204094f, 0.0f, -0.204094f },
{ 0.353553f, -0.204094f, 0.0f, -0.204094f },
};
static ALfloat SquareEncoder[4][MAX_AMBI_COEFFS];
static const ALfloat CubeMatrixHF[8][MAX_AMBI_COEFFS] = {
{ 0.25f, 0.14425f, 0.14425f, 0.14425f },
{ 0.25f, -0.14425f, 0.14425f, 0.14425f },
{ 0.25f, 0.14425f, 0.14425f, -0.14425f },
{ 0.25f, -0.14425f, 0.14425f, -0.14425f },
{ 0.25f, 0.14425f, -0.14425f, 0.14425f },
{ 0.25f, -0.14425f, -0.14425f, 0.14425f },
{ 0.25f, 0.14425f, -0.14425f, -0.14425f },
{ 0.25f, -0.14425f, -0.14425f, -0.14425f },
};
static ALfloat CubeEncoder[8][MAX_AMBI_COEFFS];
static alonce_flag encoder_inited = AL_ONCE_FLAG_INIT;
static void init_encoder(void)
{
ALuint i, j;
CalcXYZCoeffs(-0.577350269f, 0.577350269f, -0.577350269f, CubeEncoder[0]);
CalcXYZCoeffs( 0.577350269f, 0.577350269f, -0.577350269f, CubeEncoder[1]);
CalcXYZCoeffs(-0.577350269f, 0.577350269f, 0.577350269f, CubeEncoder[2]);
CalcXYZCoeffs( 0.577350269f, 0.577350269f, 0.577350269f, CubeEncoder[3]);
CalcXYZCoeffs(-0.577350269f, -0.577350269f, -0.577350269f, CubeEncoder[4]);
CalcXYZCoeffs( 0.577350269f, -0.577350269f, -0.577350269f, CubeEncoder[5]);
CalcXYZCoeffs(-0.577350269f, -0.577350269f, 0.577350269f, CubeEncoder[6]);
CalcXYZCoeffs( 0.577350269f, -0.577350269f, 0.577350269f, CubeEncoder[7]);
CalcXYZCoeffs(-0.707106781f, 0.0f, -0.707106781f, SquareEncoder[0]);
CalcXYZCoeffs( 0.707106781f, 0.0f, -0.707106781f, SquareEncoder[1]);
CalcXYZCoeffs(-0.707106781f, 0.0f, 0.707106781f, SquareEncoder[2]);
CalcXYZCoeffs( 0.707106781f, 0.0f, 0.707106781f, SquareEncoder[3]);
for(i = 0;i < 4;i++)
{
/* Remove the skipped height-related coefficients for 2D rendering. */
SquareEncoder[i][2] = SquareEncoder[i][3];
SquareEncoder[i][3] = SquareEncoder[i][4];
SquareEncoder[i][4] = SquareEncoder[i][8];
SquareEncoder[i][5] = SquareEncoder[i][9];
SquareEncoder[i][6] = SquareEncoder[i][15];
for(j = 7;j < MAX_AMBI_COEFFS;j++)
SquareEncoder[i][j] = 0.0f;
}
}
#define MAX_DELAY_LENGTH 128
/* NOTE: Low-frequency (LF) fields and BandSplitter filters are unused with
* single-band decoding
*/
typedef struct BFormatDec {
alignas(16) ALfloat MatrixHF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
alignas(16) ALfloat MatrixLF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
BandSplitter XOver[MAX_AMBI_COEFFS];
ALfloat (*Samples)[BUFFERSIZE];
/* These two alias into Samples */
ALfloat (*SamplesHF)[BUFFERSIZE];
ALfloat (*SamplesLF)[BUFFERSIZE];
alignas(16) ALfloat ChannelMix[BUFFERSIZE];
struct {
alignas(16) ALfloat Buffer[MAX_DELAY_LENGTH];
ALuint Length; /* Valid range is [0...MAX_DELAY_LENGTH). */
} Delay[MAX_OUTPUT_CHANNELS];
struct {
const ALfloat (*restrict MatrixHF)[MAX_AMBI_COEFFS];
const ALfloat (*restrict Encoder)[MAX_AMBI_COEFFS];
ALuint NumChannels;
} UpSampler;
ALuint NumChannels;
ALboolean DualBand;
ALboolean Periphonic;
} BFormatDec;
BFormatDec *bformatdec_alloc()
{
alcall_once(&encoder_inited, init_encoder);
return al_calloc(16, sizeof(BFormatDec));
}
void bformatdec_free(BFormatDec *dec)
{
if(dec)
{
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
memset(dec, 0, sizeof(*dec));
al_free(dec);
}
}
int bformatdec_getOrder(const struct BFormatDec *dec)
{
if(dec->Periphonic)
{
if(dec->NumChannels > 9) return 3;
if(dec->NumChannels > 4) return 2;
if(dec->NumChannels > 1) return 1;
}
else
{
if(dec->NumChannels > 5) return 3;
if(dec->NumChannels > 3) return 2;
if(dec->NumChannels > 1) return 1;
}
return 0;
}
void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALuint chancount, ALuint srate, const ALuint chanmap[MAX_OUTPUT_CHANNELS], int flags)
{
static const ALuint map2DTo3D[7] = {
0, 1, 3, 4, 8, 9, 15
};
const ALfloat *coeff_scale = UnitScale;
ALfloat distgain[MAX_OUTPUT_CHANNELS];
ALfloat maxdist, ratio;
ALuint i;
al_free(dec->Samples);
dec->Samples = NULL;
dec->SamplesHF = NULL;
dec->SamplesLF = NULL;
dec->NumChannels = chancount;
dec->Samples = al_calloc(16, dec->NumChannels * conf->FreqBands *
sizeof(dec->Samples[0]));
dec->SamplesHF = dec->Samples;
dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
if(conf->CoeffScale == ADS_SN3D)
coeff_scale = SN3D2N3DScale;
else if(conf->CoeffScale == ADS_FuMa)
coeff_scale = FuMa2N3DScale;
if((conf->ChanMask & ~0x831b))
{
dec->UpSampler.MatrixHF = CubeMatrixHF;
dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])CubeEncoder;
dec->UpSampler.NumChannels = 8;
dec->Periphonic = AL_TRUE;
}
else
{
dec->UpSampler.MatrixHF = SquareMatrixHF;
dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])SquareEncoder;
dec->UpSampler.NumChannels = 4;
dec->Periphonic = AL_FALSE;
}
maxdist = 0.0f;
for(i = 0;i < conf->NumSpeakers;i++)
{
maxdist = maxf(maxdist, conf->Speakers[i].Distance);
distgain[i] = 1.0f;
}
memset(dec->Delay, 0, sizeof(dec->Delay));
if((flags&BFDF_DistanceComp) && maxdist > 0.0f)
{
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALfloat delay;
/* Distance compensation only delays in steps of the sample rate.
* This is a bit less accurate since the delay time falls to the
* nearest sample time, but it's far simpler as it doesn't have to
* deal with phase offsets. This means at 48khz, for instance, the
* distance delay will be in steps of about 7 millimeters.
*/
delay = floorf((maxdist-conf->Speakers[i].Distance) / SPEEDOFSOUNDMETRESPERSEC *
(ALfloat)srate + 0.5f);
if(delay >= (ALfloat)MAX_DELAY_LENGTH)
ERR("Delay for speaker \"%s\" exceeds buffer length (%f >= %u)\n",
al_string_get_cstr(conf->Speakers[i].Name), delay, MAX_DELAY_LENGTH);
dec->Delay[chan].Length = (ALuint)clampf(delay, 0.0f, (ALfloat)(MAX_DELAY_LENGTH-1));
distgain[i] = conf->Speakers[i].Distance / maxdist;
TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
al_string_get_cstr(conf->Speakers[i].Name), dec->Delay[chan].Length, distgain[i]
);
}
}
if(conf->FreqBands == 1)
{
dec->DualBand = AL_FALSE;
ratio = 1.0f;
}
else
{
dec->DualBand = AL_TRUE;
ratio = conf->XOverFreq / (ALfloat)srate;
for(i = 0;i < MAX_AMBI_COEFFS;i++)
bandsplit_init(&dec->XOver[i], ratio);
ratio = powf(10.0f, conf->XOverRatio / 40.0f);
memset(dec->MatrixLF, 0, sizeof(dec->MatrixLF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
if(!dec->Periphonic)
{
for(j = 0;j < 7;j++)
{
ALuint l = map2DTo3D[j];
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 3) gain = conf->LFOrderGain[2] / ratio;
else if(j == 5) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<l)))
dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[l] *
gain * distgain[i];
}
}
else
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->LFOrderGain[0] / ratio;
else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[j] *
gain * distgain[i];
}
}
}
}
memset(dec->MatrixHF, 0, sizeof(dec->MatrixHF));
for(i = 0;i < conf->NumSpeakers;i++)
{
ALuint chan = chanmap[i];
ALuint j, k = 0;
ALfloat gain;
if(!dec->Periphonic)
{
for(j = 0;j < 7;j++)
{
ALuint l = map2DTo3D[j];
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 3) gain = conf->HFOrderGain[2] * ratio;
else if(j == 5) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<l)))
dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[l] *
gain * distgain[i];
}
}
else
{
for(j = 0;j < MAX_AMBI_COEFFS;j++)
{
if(j == 0) gain = conf->HFOrderGain[0] * ratio;
else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
if((conf->ChanMask&(1<<j)))
dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] *
gain * distgain[i];
}
}
}
}
static void apply_row(ALfloat *out, const ALfloat *mtx, ALfloat (*restrict in)[BUFFERSIZE], ALuint inchans, ALuint todo)
{
ALuint c, i;
for(c = 0;c < inchans;c++)
{
ALfloat gain = mtx[c];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < todo;i++)
out[i] += in[c][i] * gain;
}
}
void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALuint OutChannels, ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint SamplesToDo)
{
ALuint chan, i;
if(dec->DualBand)
{
for(i = 0;i < dec->NumChannels;i++)
bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
InSamples[i], SamplesToDo);
for(chan = 0;chan < OutChannels;chan++)
{
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->MatrixHF[chan], dec->SamplesHF,
dec->NumChannels, SamplesToDo);
apply_row(dec->ChannelMix, dec->MatrixLF[chan], dec->SamplesLF,
dec->NumChannels, SamplesToDo);
if(dec->Delay[chan].Length > 0)
{
const ALuint base = dec->Delay[chan].Length;
if(SamplesToDo >= base)
{
for(i = 0;i < base;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
for(;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i-base];
memcpy(dec->Delay[chan].Buffer, &dec->ChannelMix[SamplesToDo-base],
base*sizeof(ALfloat));
}
else
{
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
memmove(dec->Delay[chan].Buffer, dec->Delay[chan].Buffer+SamplesToDo,
base - SamplesToDo);
memcpy(dec->Delay[chan].Buffer+base-SamplesToDo, dec->ChannelMix,
SamplesToDo*sizeof(ALfloat));
}
}
else for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
else
{
for(chan = 0;chan < OutChannels;chan++)
{
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->MatrixHF[chan], InSamples,
dec->NumChannels, SamplesToDo);
if(dec->Delay[chan].Length > 0)
{
const ALuint base = dec->Delay[chan].Length;
if(SamplesToDo >= base)
{
for(i = 0;i < base;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
for(;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i-base];
memcpy(dec->Delay[chan].Buffer, &dec->ChannelMix[SamplesToDo-base],
base*sizeof(ALfloat));
}
else
{
for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->Delay[chan].Buffer[i];
memmove(dec->Delay[chan].Buffer, dec->Delay[chan].Buffer+SamplesToDo,
base - SamplesToDo);
memcpy(dec->Delay[chan].Buffer+base-SamplesToDo, dec->ChannelMix,
SamplesToDo*sizeof(ALfloat));
}
}
else for(i = 0;i < SamplesToDo;i++)
OutBuffer[chan][i] += dec->ChannelMix[i];
}
}
}
void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint InChannels, ALuint SamplesToDo)
{
ALuint i, j, k;
/* This up-sampler is very simplistic. It essentially decodes the first-
* order content to a square channel array (or cube if height is desired),
* then encodes those points onto the higher order soundfield.
*/
for(k = 0;k < dec->UpSampler.NumChannels;k++)
{
memset(dec->ChannelMix, 0, SamplesToDo*sizeof(ALfloat));
apply_row(dec->ChannelMix, dec->UpSampler.MatrixHF[k], InSamples,
InChannels, SamplesToDo);
for(j = 0;j < dec->NumChannels;j++)
{
ALfloat gain = dec->UpSampler.Encoder[k][j];
if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
continue;
for(i = 0;i < SamplesToDo;i++)
OutBuffer[j][i] += dec->ChannelMix[i] * gain;
}
}
}