openal-soft/Alc/effects/pshifter.cpp
2019-05-20 21:16:13 -07:00

407 lines
14 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#ifdef HAVE_SSE_INTRINSICS
#include <emmintrin.h>
#endif
#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>
#include "alMain.h"
#include "alcontext.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "alcomplex.h"
namespace {
using complex_d = std::complex<double>;
#define STFT_SIZE 1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP (1<<2)
#define STFT_STEP (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
inline int double2int(double d)
{
#if defined(HAVE_SSE_INTRINSICS)
return _mm_cvttsd_si32(_mm_set_sd(d));
#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
!defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
int sign, shift;
int64_t mant;
union {
double d;
int64_t i64;
} conv;
conv.d = d;
sign = (conv.i64>>63) | 1;
shift = ((conv.i64>>52)&0x7ff) - (1023+52);
/* Over/underflow */
if(UNLIKELY(shift >= 63 || shift < -52))
return 0;
mant = (conv.i64&0xfffffffffffff_i64) | 0x10000000000000_i64;
if(LIKELY(shift < 0))
return (int)(mant >> -shift) * sign;
return (int)(mant << shift) * sign;
#else
return static_cast<int>(d);
#endif
}
/* Define a Hann window, used to filter the STFT input and output. */
/* Making this constexpr seems to require C++14. */
std::array<ALdouble,STFT_SIZE> InitHannWindow()
{
std::array<ALdouble,STFT_SIZE> ret;
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
for(ALsizei i{0};i < STFT_SIZE>>1;i++)
{
ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{STFT_SIZE-1});
ret[i] = ret[STFT_SIZE-1-i] = val * val;
}
return ret;
}
alignas(16) const std::array<ALdouble,STFT_SIZE> HannWindow = InitHannWindow();
struct ALphasor {
ALdouble Amplitude;
ALdouble Phase;
};
struct ALfrequencyDomain {
ALdouble Amplitude;
ALdouble Frequency;
};
/* Converts complex to ALphasor */
inline ALphasor rect2polar(const complex_d &number)
{
ALphasor polar;
polar.Amplitude = std::abs(number);
polar.Phase = std::arg(number);
return polar;
}
/* Converts ALphasor to complex */
inline complex_d polar2rect(const ALphasor &number)
{ return std::polar<double>(number.Amplitude, number.Phase); }
struct PshifterState final : public EffectState {
/* Effect parameters */
ALsizei mCount;
ALsizei mPitchShiftI;
ALfloat mPitchShift;
ALfloat mFreqPerBin;
/* Effects buffers */
ALfloat mInFIFO[STFT_SIZE];
ALfloat mOutFIFO[STFT_STEP];
ALdouble mLastPhase[STFT_HALF_SIZE+1];
ALdouble mSumPhase[STFT_HALF_SIZE+1];
ALdouble mOutputAccum[STFT_SIZE];
complex_d mFFTbuffer[STFT_SIZE];
ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
alignas(16) ALfloat mBufferOut[BUFFERSIZE];
/* Effect gains for each output channel */
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
ALboolean deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
DEF_NEWDEL(PshifterState)
};
ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
{
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
mPitchShiftI = FRACTIONONE;
mPitchShift = 1.0f;
mFreqPerBin = device->Frequency / static_cast<ALfloat>(STFT_SIZE);
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0f);
std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
return AL_TRUE;
}
void PshifterState::update(const ALCcontext* UNUSED(context), const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const float pitch{std::pow(2.0f,
static_cast<ALfloat>(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
)};
mPitchShiftI = fastf2i(pitch*FRACTIONONE);
mPitchShift = mPitchShiftI * (1.0f/FRACTIONONE);
ALfloat coeffs[MAX_AMBI_CHANNELS];
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
mOutBuffer = target.Main->Buffer;
mOutChannels = target.Main->NumChannels;
ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
}
void PshifterState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei /*numInput*/, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput)
{
/* Pitch shifter engine based on the work of Stephan Bernsee.
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
static constexpr ALdouble expected{al::MathDefs<double>::Tau() / OVERSAMP};
const ALdouble freq_per_bin{mFreqPerBin};
ALfloat *RESTRICT bufferOut{mBufferOut};
ALsizei count{mCount};
for(ALsizei i{0};i < samplesToDo;)
{
do {
/* Fill FIFO buffer with samples data */
mInFIFO[count] = samplesIn[0][i];
bufferOut[i] = mOutFIFO[count - FIFO_LATENCY];
count++;
} while(++i < samplesToDo && count < STFT_SIZE);
/* Check whether FIFO buffer is filled */
if(count < STFT_SIZE) break;
count = FIFO_LATENCY;
/* Real signal windowing and store in FFTbuffer */
for(ALsizei k{0};k < STFT_SIZE;k++)
{
mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
mFFTbuffer[k].imag(0.0);
}
/* ANALYSIS */
/* Apply FFT to FFTbuffer data */
complex_fft(mFFTbuffer, STFT_SIZE, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
/* Compute amplitude and phase */
ALphasor component{rect2polar(mFFTbuffer[k])};
/* Compute phase difference and subtract expected phase difference */
double tmp{(component.Phase - mLastPhase[k]) - k*expected};
/* Map delta phase into +/- Pi interval */
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2));
/* Get deviation from bin frequency from the +/- Pi interval */
tmp /= expected;
/* Compute the k-th partials' true frequency, twice the amplitude
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
mAnalysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
/* Store actual phase[k] for the calculations in the next frame*/
mLastPhase[k] = component.Phase;
}
/* PROCESSING */
/* pitch shifting */
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
mSyntesis_buffer[k].Amplitude = 0.0;
mSyntesis_buffer[k].Frequency = 0.0;
}
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
ALsizei j{(k*mPitchShiftI) >> FRACTIONBITS};
if(j >= STFT_HALF_SIZE+1) break;
mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
}
/* SYNTHESIS */
/* Synthesis the processing data */
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
{
ALphasor component;
ALdouble tmp;
/* Compute bin deviation from scaled freq */
tmp = mSyntesis_buffer[k].Frequency/freq_per_bin - k;
/* Calculate actual delta phase and accumulate it to get bin phase */
mSumPhase[k] += (k + tmp) * expected;
component.Amplitude = mSyntesis_buffer[k].Amplitude;
component.Phase = mSumPhase[k];
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
mFFTbuffer[k] = polar2rect(component);
}
/* zero negative frequencies for recontruct a real signal */
for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
mFFTbuffer[k] = complex_d{};
/* Apply iFFT to buffer data */
complex_fft(mFFTbuffer, STFT_SIZE, 1.0);
/* Windowing and add to output */
for(ALsizei k{0};k < STFT_SIZE;k++)
mOutputAccum[k] += HannWindow[k] * mFFTbuffer[k].real() /
(0.5 * STFT_HALF_SIZE * OVERSAMP);
/* Shift accumulator, input & output FIFO */
ALsizei j, k;
for(k = 0;k < STFT_STEP;k++) mOutFIFO[k] = static_cast<ALfloat>(mOutputAccum[k]);
for(j = 0;k < STFT_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k];
for(;j < STFT_SIZE;j++) mOutputAccum[j] = 0.0;
for(k = 0;k < FIFO_LATENCY;k++)
mInFIFO[k] = mInFIFO[k+STFT_STEP];
}
mCount = count;
/* Now, mix the processed sound data to the output. */
MixSamples(bufferOut, numOutput, samplesOut, mCurrentGains, mTargetGains,
maxi(samplesToDo, 512), 0, samplesToDo);
}
void Pshifter_setParamf(EffectProps*, ALCcontext *context, ALenum param, ALfloat)
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
void Pshifter_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const ALfloat*)
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param); }
void Pshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
{
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
props->Pshifter.CoarseTune = val;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
props->Pshifter.FineTune = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void Pshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
{ Pshifter_setParami(props, context, param, vals[0]); }
void Pshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
{
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
*val = props->Pshifter.CoarseTune;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
*val = props->Pshifter.FineTune;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void Pshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
{ Pshifter_getParami(props, context, param, vals); }
void Pshifter_getParamf(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
void Pshifter_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); }
DEFINE_ALEFFECT_VTABLE(Pshifter);
struct PshifterStateFactory final : public EffectStateFactory {
EffectState *create() override;
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; }
};
EffectState *PshifterStateFactory::create()
{ return new PshifterState{}; }
EffectProps PshifterStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE;
props.Pshifter.FineTune = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE;
return props;
}
} // namespace
EffectStateFactory *PshifterStateFactory_getFactory()
{
static PshifterStateFactory PshifterFactory{};
return &PshifterFactory;
}