1101 lines
44 KiB
C++
1101 lines
44 KiB
C++
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2010 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <numeric>
|
|
#include <string>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "AL/alext.h"
|
|
|
|
#include "al/auxeffectslot.h"
|
|
#include "alconfig.h"
|
|
#include "alc/context.h"
|
|
#include "almalloc.h"
|
|
#include "alnumeric.h"
|
|
#include "aloptional.h"
|
|
#include "alspan.h"
|
|
#include "alstring.h"
|
|
#include "alu.h"
|
|
#include "core/ambdec.h"
|
|
#include "core/ambidefs.h"
|
|
#include "core/bformatdec.h"
|
|
#include "core/bs2b.h"
|
|
#include "core/devformat.h"
|
|
#include "core/front_stablizer.h"
|
|
#include "core/hrtf.h"
|
|
#include "core/logging.h"
|
|
#include "core/uhjfilter.h"
|
|
#include "device.h"
|
|
#include "math_defs.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using namespace std::placeholders;
|
|
using std::chrono::seconds;
|
|
using std::chrono::nanoseconds;
|
|
|
|
inline const char *GetLabelFromChannel(Channel channel)
|
|
{
|
|
switch(channel)
|
|
{
|
|
case FrontLeft: return "front-left";
|
|
case FrontRight: return "front-right";
|
|
case FrontCenter: return "front-center";
|
|
case LFE: return "lfe";
|
|
case BackLeft: return "back-left";
|
|
case BackRight: return "back-right";
|
|
case BackCenter: return "back-center";
|
|
case SideLeft: return "side-left";
|
|
case SideRight: return "side-right";
|
|
|
|
case TopFrontLeft: return "top-front-left";
|
|
case TopFrontCenter: return "top-front-center";
|
|
case TopFrontRight: return "top-front-right";
|
|
case TopCenter: return "top-center";
|
|
case TopBackLeft: return "top-back-left";
|
|
case TopBackCenter: return "top-back-center";
|
|
case TopBackRight: return "top-back-right";
|
|
|
|
case MaxChannels: break;
|
|
}
|
|
return "(unknown)";
|
|
}
|
|
|
|
|
|
std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
|
|
{
|
|
auto stablizer = FrontStablizer::Create(outchans);
|
|
for(auto &buf : stablizer->DelayBuf)
|
|
std::fill(buf.begin(), buf.end(), 0.0f);
|
|
|
|
/* Initialize band-splitting filter for the mid signal, with a crossover at
|
|
* 5khz (could be higher).
|
|
*/
|
|
stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));
|
|
|
|
return stablizer;
|
|
}
|
|
|
|
void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
|
|
{
|
|
TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);
|
|
|
|
/* Allocate extra channels for any post-filter output. */
|
|
const size_t num_chans{main_chans + real_chans};
|
|
|
|
TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
|
|
num_chans*sizeof(device->MixBuffer[0]));
|
|
device->MixBuffer.resize(num_chans);
|
|
al::span<FloatBufferLine> buffer{device->MixBuffer};
|
|
|
|
device->Dry.Buffer = buffer.first(main_chans);
|
|
buffer = buffer.subspan(main_chans);
|
|
if(real_chans != 0)
|
|
{
|
|
device->RealOut.Buffer = buffer.first(real_chans);
|
|
buffer = buffer.subspan(real_chans);
|
|
}
|
|
else
|
|
device->RealOut.Buffer = device->Dry.Buffer;
|
|
}
|
|
|
|
|
|
struct ChannelMap {
|
|
Channel ChanName;
|
|
float Config[MaxAmbi2DChannels];
|
|
};
|
|
|
|
bool MakeSpeakerMap(ALCdevice *device, const AmbDecConf *conf, uint (&speakermap)[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
auto map_spkr = [device](const AmbDecConf::SpeakerConf &speaker) -> uint
|
|
{
|
|
/* NOTE: AmbDec does not define any standard speaker names, however
|
|
* for this to work we have to by able to find the output channel
|
|
* the speaker definition corresponds to. Therefore, OpenAL Soft
|
|
* requires these channel labels to be recognized:
|
|
*
|
|
* LF = Front left
|
|
* RF = Front right
|
|
* LS = Side left
|
|
* RS = Side right
|
|
* LB = Back left
|
|
* RB = Back right
|
|
* CE = Front center
|
|
* CB = Back center
|
|
*
|
|
* Additionally, surround51 will acknowledge back speakers for side
|
|
* channels, and surround51rear will acknowledge side speakers for
|
|
* back channels, to avoid issues with an ambdec expecting 5.1 to
|
|
* use the side channels when the device is configured for back,
|
|
* and vice-versa.
|
|
*/
|
|
Channel ch{};
|
|
if(speaker.Name == "LF")
|
|
ch = FrontLeft;
|
|
else if(speaker.Name == "RF")
|
|
ch = FrontRight;
|
|
else if(speaker.Name == "CE")
|
|
ch = FrontCenter;
|
|
else if(speaker.Name == "LS")
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
ch = BackLeft;
|
|
else
|
|
ch = SideLeft;
|
|
}
|
|
else if(speaker.Name == "RS")
|
|
{
|
|
if(device->FmtChans == DevFmtX51Rear)
|
|
ch = BackRight;
|
|
else
|
|
ch = SideRight;
|
|
}
|
|
else if(speaker.Name == "LB")
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
ch = SideLeft;
|
|
else
|
|
ch = BackLeft;
|
|
}
|
|
else if(speaker.Name == "RB")
|
|
{
|
|
if(device->FmtChans == DevFmtX51)
|
|
ch = SideRight;
|
|
else
|
|
ch = BackRight;
|
|
}
|
|
else if(speaker.Name == "CB")
|
|
ch = BackCenter;
|
|
else
|
|
{
|
|
ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
|
|
return INVALID_CHANNEL_INDEX;
|
|
}
|
|
const uint chidx{GetChannelIdxByName(device->RealOut, ch)};
|
|
if(chidx == INVALID_CHANNEL_INDEX)
|
|
ERR("Failed to lookup AmbDec speaker label %s\n", speaker.Name.c_str());
|
|
return chidx;
|
|
};
|
|
std::transform(conf->Speakers.get(), conf->Speakers.get()+conf->NumSpeakers,
|
|
std::begin(speakermap), map_spkr);
|
|
/* Return success if no invalid entries are found. */
|
|
auto spkrmap_end = std::begin(speakermap) + conf->NumSpeakers;
|
|
return std::find(std::begin(speakermap), spkrmap_end, INVALID_CHANNEL_INDEX) == spkrmap_end;
|
|
}
|
|
|
|
|
|
void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d)
|
|
{
|
|
static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 };
|
|
static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 };
|
|
|
|
/* NFC is only used when AvgSpeakerDist is greater than 0. */
|
|
const char *devname{device->DeviceName.c_str()};
|
|
if(!GetConfigValueBool(devname, "decoder", "nfc", 0) || !(ctrl_dist > 0.0f))
|
|
return;
|
|
|
|
device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
|
|
TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);
|
|
|
|
auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
|
|
std::begin(device->NumChannelsPerOrder));
|
|
std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
|
|
}
|
|
|
|
void InitDistanceComp(ALCdevice *device, const AmbDecConf *conf,
|
|
const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
auto get_max = std::bind(maxf, _1,
|
|
std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
|
|
const float maxdist{std::accumulate(conf->Speakers.get(),
|
|
conf->Speakers.get()+conf->NumSpeakers, 0.0f, get_max)};
|
|
|
|
const char *devname{device->DeviceName.c_str()};
|
|
if(!GetConfigValueBool(devname, "decoder", "distance-comp", 1) || !(maxdist > 0.0f))
|
|
return;
|
|
|
|
const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
|
|
std::vector<DistanceComp::ChanData> ChanDelay;
|
|
size_t total{0u};
|
|
ChanDelay.reserve(conf->NumSpeakers + 1);
|
|
for(size_t i{0u};i < conf->NumSpeakers;i++)
|
|
{
|
|
const AmbDecConf::SpeakerConf &speaker = conf->Speakers[i];
|
|
const uint chan{speakermap[i]};
|
|
|
|
/* Distance compensation only delays in steps of the sample rate. This
|
|
* is a bit less accurate since the delay time falls to the nearest
|
|
* sample time, but it's far simpler as it doesn't have to deal with
|
|
* phase offsets. This means at 48khz, for instance, the distance delay
|
|
* will be in steps of about 7 millimeters.
|
|
*/
|
|
float delay{std::floor((maxdist - speaker.Distance)*distSampleScale + 0.5f)};
|
|
if(delay > float{MAX_DELAY_LENGTH-1})
|
|
{
|
|
ERR("Delay for speaker \"%s\" exceeds buffer length (%f > %d)\n",
|
|
speaker.Name.c_str(), delay, MAX_DELAY_LENGTH-1);
|
|
delay = float{MAX_DELAY_LENGTH-1};
|
|
}
|
|
|
|
ChanDelay.resize(maxz(ChanDelay.size(), chan+1));
|
|
ChanDelay[chan].Length = static_cast<uint>(delay);
|
|
ChanDelay[chan].Gain = speaker.Distance / maxdist;
|
|
TRACE("Channel %u \"%s\" distance compensation: %u samples, %f gain\n", chan,
|
|
speaker.Name.c_str(), ChanDelay[chan].Length, ChanDelay[chan].Gain);
|
|
|
|
/* Round up to the next 4th sample, so each channel buffer starts
|
|
* 16-byte aligned.
|
|
*/
|
|
total += RoundUp(ChanDelay[chan].Length, 4);
|
|
}
|
|
|
|
if(total > 0)
|
|
{
|
|
auto chandelays = DistanceComp::Create(total);
|
|
|
|
ChanDelay[0].Buffer = chandelays->mSamples.data();
|
|
auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur)
|
|
-> DistanceComp::ChanData
|
|
{
|
|
DistanceComp::ChanData ret{cur};
|
|
ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
|
|
return ret;
|
|
};
|
|
std::partial_sum(ChanDelay.begin(), ChanDelay.end(), chandelays->mChannels.begin(),
|
|
set_bufptr);
|
|
device->ChannelDelays = std::move(chandelays);
|
|
}
|
|
}
|
|
|
|
|
|
inline auto& GetAmbiScales(DevAmbiScaling scaletype) noexcept
|
|
{
|
|
if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa();
|
|
if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D();
|
|
return AmbiScale::FromN3D();
|
|
}
|
|
|
|
inline auto& GetAmbiLayout(DevAmbiLayout layouttype) noexcept
|
|
{
|
|
if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa();
|
|
return AmbiIndex::FromACN();
|
|
}
|
|
|
|
|
|
using ChannelCoeffs = std::array<float,MaxAmbiChannels>;
|
|
enum DecoderMode : bool {
|
|
SingleBand = false,
|
|
DualBand = true
|
|
};
|
|
|
|
template<DecoderMode Mode, size_t N>
|
|
struct DecoderConfig;
|
|
|
|
template<size_t N>
|
|
struct DecoderConfig<SingleBand, N> {
|
|
uint8_t mOrder;
|
|
bool mIs3D;
|
|
std::array<Channel,N> mChannels;
|
|
std::array<float,MaxAmbiOrder+1> mOrderGain;
|
|
std::array<ChannelCoeffs,N> mCoeffs;
|
|
};
|
|
|
|
template<size_t N>
|
|
struct DecoderConfig<DualBand, N> {
|
|
uint8_t mOrder;
|
|
bool mIs3D;
|
|
std::array<Channel,N> mChannels;
|
|
std::array<float,MaxAmbiOrder+1> mOrderGain;
|
|
std::array<ChannelCoeffs,N> mCoeffs;
|
|
std::array<float,MaxAmbiOrder+1> mOrderGainLF;
|
|
std::array<ChannelCoeffs,N> mCoeffsLF;
|
|
};
|
|
|
|
template<>
|
|
struct DecoderConfig<DualBand, 0> {
|
|
uint8_t mOrder;
|
|
bool mIs3D;
|
|
al::span<const Channel> mChannels;
|
|
al::span<const float> mOrderGain;
|
|
al::span<const ChannelCoeffs> mCoeffs;
|
|
al::span<const float> mOrderGainLF;
|
|
al::span<const ChannelCoeffs> mCoeffsLF;
|
|
|
|
template<size_t N>
|
|
DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
|
|
{
|
|
mOrder = rhs.mOrder;
|
|
mIs3D = rhs.mIs3D;
|
|
mChannels = rhs.mChannels;
|
|
mOrderGain = rhs.mOrderGain;
|
|
mCoeffs = rhs.mCoeffs;
|
|
mOrderGainLF = {};
|
|
mCoeffsLF = {};
|
|
return *this;
|
|
}
|
|
|
|
template<size_t N>
|
|
DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
|
|
{
|
|
mOrder = rhs.mOrder;
|
|
mIs3D = rhs.mIs3D;
|
|
mChannels = rhs.mChannels;
|
|
mOrderGain = rhs.mOrderGain;
|
|
mCoeffs = rhs.mCoeffs;
|
|
mOrderGainLF = rhs.mOrderGainLF;
|
|
mCoeffsLF = rhs.mCoeffsLF;
|
|
return *this;
|
|
}
|
|
};
|
|
using DecoderView = DecoderConfig<DualBand, 0>;
|
|
|
|
constexpr DecoderConfig<SingleBand, 1> MonoConfig{
|
|
0, false, {{FrontCenter}},
|
|
{{1.0f}},
|
|
{{ {{1.0f}} }}
|
|
};
|
|
constexpr DecoderConfig<SingleBand, 2> StereoConfig{
|
|
1, false, {{FrontLeft, FrontRight}},
|
|
{{1.0f, 1.0f}},
|
|
{{
|
|
{{5.00000000e-1f, 2.88675135e-1f, 5.52305643e-2f}},
|
|
{{5.00000000e-1f, -2.88675135e-1f, 5.52305643e-2f}},
|
|
}}
|
|
};
|
|
constexpr DecoderConfig<DualBand, 4> QuadConfig{
|
|
2, false, {{BackLeft, FrontLeft, FrontRight, BackRight}},
|
|
/*HF*/{{1.15470054e+0f, 1.00000000e+0f, 5.77350269e-1f}},
|
|
{{
|
|
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
|
|
}},
|
|
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
|
|
{{
|
|
{{2.50000000e-1f, 2.04124145e-1f, -2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, 2.04124145e-1f, 2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, -2.04124145e-1f, 2.04124145e-1f, -1.29099445e-1f, 0.00000000e+0f}},
|
|
{{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f, 1.29099445e-1f, 0.00000000e+0f}},
|
|
}}
|
|
};
|
|
constexpr DecoderConfig<SingleBand, 4> X51Config{
|
|
2, false, {{SideLeft, FrontLeft, FrontRight, SideRight}},
|
|
{{1.0f, 1.0f, 1.0f}},
|
|
{{
|
|
{{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
|
|
{{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
|
|
{{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
|
|
{{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
|
|
}}
|
|
};
|
|
constexpr DecoderConfig<SingleBand, 4> X51RearConfig{
|
|
2, false, {{BackLeft, FrontLeft, FrontRight, BackRight}},
|
|
{{1.0f, 1.0f, 1.0f}},
|
|
{{
|
|
{{3.33000782e-1f, 1.89084803e-1f, -2.00042375e-1f, -2.12307769e-2f, -1.14579885e-2f}},
|
|
{{1.88542860e-1f, 1.27709292e-1f, 1.66295695e-1f, 7.30571517e-2f, 2.10901184e-2f}},
|
|
{{1.88542860e-1f, -1.27709292e-1f, 1.66295695e-1f, -7.30571517e-2f, 2.10901184e-2f}},
|
|
{{3.33000782e-1f, -1.89084803e-1f, -2.00042375e-1f, 2.12307769e-2f, -1.14579885e-2f}},
|
|
}}
|
|
};
|
|
constexpr DecoderConfig<SingleBand, 5> X61Config{
|
|
2, false, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
|
|
{{1.0f, 1.0f, 1.0f}},
|
|
{{
|
|
{{2.04460341e-1f, 2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
|
|
{{1.58923161e-1f, 9.21772680e-2f, 1.59658796e-1f, 6.66278083e-2f, 3.84686854e-2f}},
|
|
{{1.58923161e-1f, -9.21772680e-2f, 1.59658796e-1f, -6.66278083e-2f, 3.84686854e-2f}},
|
|
{{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f, 2.60790269e-2f, -6.87239792e-2f}},
|
|
{{2.50001688e-1f, 0.00000000e+0f, -2.50000094e-1f, 0.00000000e+0f, 6.05133395e-2f}},
|
|
}}
|
|
};
|
|
constexpr DecoderConfig<DualBand, 6> X71Config{
|
|
3, false, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
|
|
/*HF*/{{1.22474487e+0f, 1.13151672e+0f, 8.66025404e-1f, 4.68689571e-1f}},
|
|
{{
|
|
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
}},
|
|
/*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
|
|
{{
|
|
{{1.66666667e-1f, 9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, 1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, 9.62250449e-2f, 1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -9.62250449e-2f, 1.66666667e-1f, -1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -1.92450090e-1f, 0.00000000e+0f, 0.00000000e+0f, -1.72132593e-1f, 7.96819073e-2f, 0.00000000e+0f}},
|
|
{{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f, 1.49071198e-1f, 8.60662966e-2f, -7.96819073e-2f, 0.00000000e+0f}},
|
|
}}
|
|
};
|
|
|
|
void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false)
|
|
{
|
|
DecoderView decoder{};
|
|
switch(device->FmtChans)
|
|
{
|
|
case DevFmtMono:
|
|
decoder = MonoConfig;
|
|
break;
|
|
case DevFmtStereo:
|
|
decoder = StereoConfig;
|
|
break;
|
|
case DevFmtQuad:
|
|
decoder = QuadConfig;
|
|
break;
|
|
case DevFmtX51:
|
|
decoder = X51Config;
|
|
break;
|
|
case DevFmtX51Rear:
|
|
decoder = X51RearConfig;
|
|
break;
|
|
case DevFmtX61:
|
|
decoder = X61Config;
|
|
break;
|
|
case DevFmtX71:
|
|
decoder = X71Config;
|
|
break;
|
|
case DevFmtAmbi3D:
|
|
const char *devname{device->DeviceName.c_str()};
|
|
auto&& acnmap = GetAmbiLayout(device->mAmbiLayout);
|
|
auto&& n3dscale = GetAmbiScales(device->mAmbiScale);
|
|
|
|
/* For DevFmtAmbi3D, the ambisonic order is already set. */
|
|
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
|
|
std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
|
|
[&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
|
|
{ return BFChannelConfig{1.0f/n3dscale[acn], acn}; });
|
|
AllocChannels(device, count, 0);
|
|
|
|
float nfc_delay{ConfigValueFloat(devname, "decoder", "nfc-ref-delay").value_or(0.0f)};
|
|
if(nfc_delay > 0.0f)
|
|
InitNearFieldCtrl(device, nfc_delay * SpeedOfSoundMetersPerSec, device->mAmbiOrder,
|
|
true);
|
|
return;
|
|
}
|
|
|
|
const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
|
|
al::vector<ChannelDec> chancoeffs, chancoeffslf;
|
|
for(size_t i{0u};i < decoder.mChannels.size();++i)
|
|
{
|
|
const uint idx{GetChannelIdxByName(device->RealOut, decoder.mChannels[i])};
|
|
if(idx == INVALID_CHANNEL_INDEX)
|
|
{
|
|
ERR("Failed to find %s channel in device\n",
|
|
GetLabelFromChannel(decoder.mChannels[i]));
|
|
continue;
|
|
}
|
|
|
|
chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
|
|
al::span<float,MaxAmbiChannels> coeffs{chancoeffs[idx]};
|
|
size_t ambichan{0};
|
|
for(uint o{0};o < decoder.mOrder+1;++o)
|
|
{
|
|
const float order_gain{decoder.mOrderGain[o]};
|
|
const size_t order_max{decoder.mIs3D ? AmbiChannelsFromOrder(o) :
|
|
Ambi2DChannelsFromOrder(o)};
|
|
for(;ambichan < order_max;++ambichan)
|
|
coeffs[ambichan] = decoder.mCoeffs[i][ambichan] * order_gain;
|
|
}
|
|
if(!dual_band)
|
|
continue;
|
|
|
|
chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
|
|
coeffs = chancoeffslf[idx];
|
|
ambichan = 0;
|
|
for(uint o{0};o < decoder.mOrder+1;++o)
|
|
{
|
|
const float order_gain{decoder.mOrderGainLF[o]};
|
|
const size_t order_max{decoder.mIs3D ? AmbiChannelsFromOrder(o) :
|
|
Ambi2DChannelsFromOrder(o)};
|
|
for(;ambichan < order_max;++ambichan)
|
|
coeffs[ambichan] = decoder.mCoeffsLF[i][ambichan] * order_gain;
|
|
}
|
|
}
|
|
|
|
/* For non-DevFmtAmbi3D, set the ambisonic order. */
|
|
device->mAmbiOrder = decoder.mOrder;
|
|
|
|
const size_t ambicount{decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder) :
|
|
Ambi2DChannelsFromOrder(decoder.mOrder)};
|
|
const al::span<const uint8_t> acnmap{decoder.mIs3D ? AmbiIndex::FromACN().data() :
|
|
AmbiIndex::FromACN2D().data(), ambicount};
|
|
std::transform(acnmap.begin(), acnmap.end(), std::begin(device->Dry.AmbiMap),
|
|
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; });
|
|
AllocChannels(device, ambicount, device->channelsFromFmt());
|
|
|
|
std::unique_ptr<FrontStablizer> stablizer;
|
|
if(stablize)
|
|
{
|
|
/* Only enable the stablizer if the decoder does not output to the
|
|
* front-center channel.
|
|
*/
|
|
const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
|
|
bool hasfc{false};
|
|
if(cidx < chancoeffs.size())
|
|
{
|
|
for(const auto &coeff : chancoeffs[cidx])
|
|
hasfc |= coeff != 0.0f;
|
|
}
|
|
if(!hasfc && cidx < chancoeffslf.size())
|
|
{
|
|
for(const auto &coeff : chancoeffslf[cidx])
|
|
hasfc |= coeff != 0.0f;
|
|
}
|
|
if(!hasfc)
|
|
{
|
|
stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
|
|
TRACE("Front stablizer enabled\n");
|
|
}
|
|
}
|
|
|
|
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
|
|
!dual_band ? "single" : "dual",
|
|
(decoder.mOrder > 2) ? "third" :
|
|
(decoder.mOrder > 1) ? "second" : "first",
|
|
decoder.mIs3D ? " periphonic" : "");
|
|
device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
|
|
std::move(stablizer));
|
|
}
|
|
|
|
void InitCustomPanning(ALCdevice *device, const bool hqdec, const bool stablize,
|
|
const AmbDecConf *conf, const uint (&speakermap)[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
if(!hqdec && conf->FreqBands != 1)
|
|
ERR("Basic renderer uses the high-frequency matrix as single-band (xover_freq = %.0fhz)\n",
|
|
conf->XOverFreq);
|
|
device->mXOverFreq = conf->XOverFreq;
|
|
|
|
const uint order{(conf->ChanMask > Ambi2OrderMask) ? 3u :
|
|
(conf->ChanMask > Ambi1OrderMask) ? 2u : 1u};
|
|
device->mAmbiOrder = order;
|
|
|
|
size_t count;
|
|
if((conf->ChanMask&AmbiPeriphonicMask))
|
|
{
|
|
count = AmbiChannelsFromOrder(order);
|
|
std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
|
|
std::begin(device->Dry.AmbiMap),
|
|
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
|
|
);
|
|
}
|
|
else
|
|
{
|
|
count = Ambi2DChannelsFromOrder(order);
|
|
std::transform(AmbiIndex::FromACN2D().begin(), AmbiIndex::FromACN2D().begin()+count,
|
|
std::begin(device->Dry.AmbiMap),
|
|
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
|
|
);
|
|
}
|
|
AllocChannels(device, count, device->channelsFromFmt());
|
|
|
|
std::unique_ptr<FrontStablizer> stablizer;
|
|
if(stablize)
|
|
{
|
|
/* Only enable the stablizer if the decoder does not output to the
|
|
* front-center channel.
|
|
*/
|
|
size_t cidx{0};
|
|
for(;cidx < conf->NumSpeakers;++cidx)
|
|
{
|
|
if(speakermap[cidx] == FrontCenter)
|
|
break;
|
|
}
|
|
bool hasfc{false};
|
|
if(cidx < conf->NumSpeakers && conf->FreqBands != 1)
|
|
{
|
|
for(const auto &coeff : conf->LFMatrix[cidx])
|
|
hasfc |= coeff != 0.0f;
|
|
}
|
|
if(!hasfc && cidx < conf->NumSpeakers)
|
|
{
|
|
for(const auto &coeff : conf->HFMatrix[cidx])
|
|
hasfc |= coeff != 0.0f;
|
|
}
|
|
if(!hasfc)
|
|
{
|
|
stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
|
|
TRACE("Front stablizer enabled\n");
|
|
}
|
|
}
|
|
|
|
TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
|
|
(!hqdec || conf->FreqBands == 1) ? "single" : "dual",
|
|
(conf->ChanMask > Ambi2OrderMask) ? "third" :
|
|
(conf->ChanMask > Ambi1OrderMask) ? "second" : "first",
|
|
(conf->ChanMask&AmbiPeriphonicMask) ? " periphonic" : ""
|
|
);
|
|
device->AmbiDecoder = BFormatDec::Create(conf, hqdec, count, device->Frequency, speakermap,
|
|
std::move(stablizer));
|
|
|
|
auto accum_spkr_dist = std::bind(std::plus<float>{}, _1,
|
|
std::bind(std::mem_fn(&AmbDecConf::SpeakerConf::Distance), _2));
|
|
const float accum_dist{std::accumulate(conf->Speakers.get(),
|
|
conf->Speakers.get()+conf->NumSpeakers, 0.0f, accum_spkr_dist)};
|
|
InitNearFieldCtrl(device, accum_dist / static_cast<float>(conf->NumSpeakers), order,
|
|
!!(conf->ChanMask&AmbiPeriphonicMask));
|
|
|
|
InitDistanceComp(device, conf, speakermap);
|
|
}
|
|
|
|
void InitHrtfPanning(ALCdevice *device)
|
|
{
|
|
constexpr float Deg180{al::MathDefs<float>::Pi()};
|
|
constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
|
|
constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
|
|
constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
|
|
constexpr float Deg_35{6.154797086e-01f /* 35~ 36 degrees*/};
|
|
constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
|
|
constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
|
|
constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
|
|
static const AngularPoint AmbiPoints1O[]{
|
|
{ EvRadians{ Deg_35}, AzRadians{-Deg_45} },
|
|
{ EvRadians{ Deg_35}, AzRadians{-Deg135} },
|
|
{ EvRadians{ Deg_35}, AzRadians{ Deg_45} },
|
|
{ EvRadians{ Deg_35}, AzRadians{ Deg135} },
|
|
{ EvRadians{-Deg_35}, AzRadians{-Deg_45} },
|
|
{ EvRadians{-Deg_35}, AzRadians{-Deg135} },
|
|
{ EvRadians{-Deg_35}, AzRadians{ Deg_45} },
|
|
{ EvRadians{-Deg_35}, AzRadians{ Deg135} },
|
|
}, AmbiPoints2O[]{
|
|
{ EvRadians{-Deg_35}, AzRadians{-Deg_45} },
|
|
{ EvRadians{-Deg_35}, AzRadians{-Deg135} },
|
|
{ EvRadians{ Deg_35}, AzRadians{-Deg135} },
|
|
{ EvRadians{ Deg_35}, AzRadians{ Deg135} },
|
|
{ EvRadians{ Deg_35}, AzRadians{ Deg_45} },
|
|
{ EvRadians{-Deg_35}, AzRadians{ Deg_45} },
|
|
{ EvRadians{-Deg_35}, AzRadians{ Deg135} },
|
|
{ EvRadians{ Deg_35}, AzRadians{-Deg_45} },
|
|
{ EvRadians{-Deg_69}, AzRadians{-Deg_90} },
|
|
{ EvRadians{ Deg_69}, AzRadians{ Deg_90} },
|
|
{ EvRadians{-Deg_69}, AzRadians{ Deg_90} },
|
|
{ EvRadians{ Deg_69}, AzRadians{-Deg_90} },
|
|
{ EvRadians{ 0.0f}, AzRadians{-Deg_69} },
|
|
{ EvRadians{ 0.0f}, AzRadians{-Deg111} },
|
|
{ EvRadians{ 0.0f}, AzRadians{ Deg_69} },
|
|
{ EvRadians{ 0.0f}, AzRadians{ Deg111} },
|
|
{ EvRadians{-Deg_21}, AzRadians{ Deg180} },
|
|
{ EvRadians{ Deg_21}, AzRadians{ Deg180} },
|
|
{ EvRadians{ Deg_21}, AzRadians{ 0.0f} },
|
|
{ EvRadians{-Deg_21}, AzRadians{ 0.0f} },
|
|
};
|
|
static const float AmbiMatrix1O[][MaxAmbiChannels]{
|
|
{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
|
|
{ 1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
|
|
{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, 1.250000000e-01f },
|
|
{ 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f },
|
|
{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
|
|
{ 1.250000000e-01f, 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
|
|
{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, 1.250000000e-01f },
|
|
{ 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
|
|
}, AmbiMatrix2O[][MaxAmbiChannels]{
|
|
{ 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 5.000000000e-02f, -6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, -6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 5.000000000e-02f, 6.454972244e-02f, 6.454972244e-02f, 0.000000000e+00f, 6.454972244e-02f, 0.000000000e+00f },
|
|
{ 5.000000000e-02f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
|
|
{ 5.000000000e-02f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
|
|
{ 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
|
|
{ 5.000000000e-02f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, 6.454972244e-02f, 9.045084972e-02f, 0.000000000e+00f, -1.232790000e-02f },
|
|
{ 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
|
|
{ 5.000000000e-02f, 8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
|
|
{ 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, 3.090169944e-02f, -6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
|
|
{ 5.000000000e-02f, -8.090169944e-02f, 0.000000000e+00f, -3.090169944e-02f, 6.454972244e-02f, 0.000000000e+00f, -5.590169944e-02f, 0.000000000e+00f, -7.216878365e-02f },
|
|
{ 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
|
|
{ 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, -8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
|
|
{ 5.000000000e-02f, 0.000000000e+00f, 3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, 6.454972244e-02f, 8.449668365e-02f },
|
|
{ 5.000000000e-02f, 0.000000000e+00f, -3.090169944e-02f, 8.090169944e-02f, 0.000000000e+00f, 0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f, 8.449668365e-02f },
|
|
};
|
|
static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{
|
|
2.000000000e+00f, 1.154700538e+00f
|
|
}, AmbiOrderHFGain2O[MaxAmbiOrder+1]{
|
|
/*AMP 1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/
|
|
/*RMS*/ 9.128709292e-01f, 7.071067812e-01f, 3.651483717e-01f
|
|
/*ENRGY 2.357022604e+00f, 1.825741858e+00f, 9.428090416e-01f*/
|
|
};
|
|
|
|
static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
|
|
static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");
|
|
|
|
/* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
|
|
* and it eases the CPU/memory load.
|
|
*/
|
|
device->mRenderMode = RenderMode::Hrtf;
|
|
uint ambi_order{1};
|
|
if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "hrtf-mode"))
|
|
{
|
|
struct HrtfModeEntry {
|
|
char name[8];
|
|
RenderMode mode;
|
|
uint order;
|
|
};
|
|
static const HrtfModeEntry hrtf_modes[]{
|
|
{ "full", RenderMode::Hrtf, 1 },
|
|
{ "ambi1", RenderMode::Normal, 1 },
|
|
{ "ambi2", RenderMode::Normal, 2 },
|
|
};
|
|
|
|
const char *mode{modeopt->c_str()};
|
|
if(al::strcasecmp(mode, "basic") == 0 || al::strcasecmp(mode, "ambi3") == 0)
|
|
{
|
|
ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
|
|
mode = "ambi2";
|
|
}
|
|
|
|
auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
|
|
{ return al::strcasecmp(mode, entry.name) == 0; };
|
|
auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
|
|
if(iter == std::end(hrtf_modes))
|
|
ERR("Unexpected hrtf-mode: %s\n", mode);
|
|
else
|
|
{
|
|
device->mRenderMode = iter->mode;
|
|
ambi_order = iter->order;
|
|
}
|
|
}
|
|
TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
|
|
(((ambi_order%100)/10) == 1) ? "th" :
|
|
((ambi_order%10) == 1) ? "st" :
|
|
((ambi_order%10) == 2) ? "nd" :
|
|
((ambi_order%10) == 3) ? "rd" : "th",
|
|
(device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
|
|
device->mHrtfName.c_str());
|
|
|
|
al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
|
|
const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O};
|
|
al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
|
|
if(ambi_order >= 2)
|
|
{
|
|
AmbiPoints = AmbiPoints2O;
|
|
AmbiMatrix = AmbiMatrix2O;
|
|
AmbiOrderHFGain = AmbiOrderHFGain2O;
|
|
}
|
|
device->mAmbiOrder = ambi_order;
|
|
|
|
const size_t count{AmbiChannelsFromOrder(ambi_order)};
|
|
std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
|
|
std::begin(device->Dry.AmbiMap),
|
|
[](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
|
|
);
|
|
AllocChannels(device, count, device->channelsFromFmt());
|
|
|
|
HrtfStore *Hrtf{device->mHrtf.get()};
|
|
auto hrtfstate = DirectHrtfState::Create(count);
|
|
hrtfstate->build(Hrtf, device->mIrSize, AmbiPoints, AmbiMatrix, device->mXOverFreq,
|
|
AmbiOrderHFGain);
|
|
device->mHrtfState = std::move(hrtfstate);
|
|
|
|
InitNearFieldCtrl(device, Hrtf->field[0].distance, ambi_order, true);
|
|
}
|
|
|
|
void InitUhjPanning(ALCdevice *device)
|
|
{
|
|
/* UHJ is always 2D first-order. */
|
|
constexpr size_t count{Ambi2DChannelsFromOrder(1)};
|
|
|
|
device->mAmbiOrder = 1;
|
|
|
|
auto acnmap_begin = AmbiIndex::FromFuMa().begin();
|
|
std::transform(acnmap_begin, acnmap_begin + count, std::begin(device->Dry.AmbiMap),
|
|
[](const uint8_t &acn) noexcept -> BFChannelConfig
|
|
{ return BFChannelConfig{1.0f/AmbiScale::FromFuMa()[acn], acn}; });
|
|
AllocChannels(device, count, device->channelsFromFmt());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void aluInitRenderer(ALCdevice *device, int hrtf_id, HrtfRequestMode hrtf_appreq,
|
|
HrtfRequestMode hrtf_userreq)
|
|
{
|
|
const char *devname{device->DeviceName.c_str()};
|
|
|
|
/* Hold the HRTF the device last used, in case it's used again. */
|
|
HrtfStorePtr old_hrtf{std::move(device->mHrtf)};
|
|
|
|
device->mHrtfState = nullptr;
|
|
device->mHrtf = nullptr;
|
|
device->mIrSize = 0;
|
|
device->mHrtfName.clear();
|
|
device->mXOverFreq = 400.0f;
|
|
device->mRenderMode = RenderMode::Normal;
|
|
|
|
if(device->FmtChans != DevFmtStereo)
|
|
{
|
|
old_hrtf = nullptr;
|
|
if(hrtf_appreq == Hrtf_Enable)
|
|
device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
|
|
|
|
const char *layout{nullptr};
|
|
switch(device->FmtChans)
|
|
{
|
|
case DevFmtQuad: layout = "quad"; break;
|
|
case DevFmtX51: /* fall-through */
|
|
case DevFmtX51Rear: layout = "surround51"; break;
|
|
case DevFmtX61: layout = "surround61"; break;
|
|
case DevFmtX71: layout = "surround71"; break;
|
|
/* Mono, Stereo, and Ambisonics output don't use custom decoders. */
|
|
case DevFmtMono:
|
|
case DevFmtStereo:
|
|
case DevFmtAmbi3D:
|
|
break;
|
|
}
|
|
|
|
uint speakermap[MAX_OUTPUT_CHANNELS];
|
|
AmbDecConf *pconf{nullptr};
|
|
AmbDecConf conf{};
|
|
if(layout)
|
|
{
|
|
if(auto decopt = ConfigValueStr(devname, "decoder", layout))
|
|
{
|
|
if(auto err = conf.load(decopt->c_str()))
|
|
{
|
|
ERR("Failed to load layout file %s\n", decopt->c_str());
|
|
ERR(" %s\n", err->c_str());
|
|
}
|
|
else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS)
|
|
ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers,
|
|
MAX_OUTPUT_CHANNELS);
|
|
else if(conf.ChanMask > Ambi3OrderMask)
|
|
ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
|
|
Ambi3OrderMask);
|
|
else if(MakeSpeakerMap(device, &conf, speakermap))
|
|
pconf = &conf;
|
|
}
|
|
}
|
|
|
|
/* Enable the stablizer only for formats that have front-left, front-
|
|
* right, and front-center outputs.
|
|
*/
|
|
const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != INVALID_CHANNEL_INDEX
|
|
&& device->RealOut.ChannelIndex[FrontLeft] != INVALID_CHANNEL_INDEX
|
|
&& device->RealOut.ChannelIndex[FrontRight] != INVALID_CHANNEL_INDEX
|
|
&& GetConfigValueBool(devname, nullptr, "front-stablizer", 0) != 0};
|
|
const bool hqdec{GetConfigValueBool(devname, "decoder", "hq-mode", 1) != 0};
|
|
if(!pconf)
|
|
InitPanning(device, hqdec, stablize);
|
|
else
|
|
InitCustomPanning(device, hqdec, stablize, pconf, speakermap);
|
|
if(auto *ambidec{device->AmbiDecoder.get()})
|
|
{
|
|
device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
|
|
: &ALCdevice::ProcessAmbiDec;
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool headphones{device->IsHeadphones};
|
|
if(device->Type != DeviceType::Loopback)
|
|
{
|
|
if(auto modeopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-mode"))
|
|
{
|
|
const char *mode{modeopt->c_str()};
|
|
if(al::strcasecmp(mode, "headphones") == 0)
|
|
headphones = true;
|
|
else if(al::strcasecmp(mode, "speakers") == 0)
|
|
headphones = false;
|
|
else if(al::strcasecmp(mode, "auto") != 0)
|
|
ERR("Unexpected stereo-mode: %s\n", mode);
|
|
}
|
|
}
|
|
|
|
if(hrtf_userreq == Hrtf_Default)
|
|
{
|
|
bool usehrtf = (headphones && hrtf_appreq != Hrtf_Disable) ||
|
|
(hrtf_appreq == Hrtf_Enable);
|
|
if(!usehrtf) goto no_hrtf;
|
|
|
|
device->mHrtfStatus = ALC_HRTF_ENABLED_SOFT;
|
|
if(headphones && hrtf_appreq != Hrtf_Disable)
|
|
device->mHrtfStatus = ALC_HRTF_HEADPHONES_DETECTED_SOFT;
|
|
}
|
|
else
|
|
{
|
|
if(hrtf_userreq != Hrtf_Enable)
|
|
{
|
|
if(hrtf_appreq == Hrtf_Enable)
|
|
device->mHrtfStatus = ALC_HRTF_DENIED_SOFT;
|
|
goto no_hrtf;
|
|
}
|
|
device->mHrtfStatus = ALC_HRTF_REQUIRED_SOFT;
|
|
}
|
|
|
|
if(device->mHrtfList.empty())
|
|
device->enumerateHrtfs();
|
|
|
|
if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->mHrtfList.size())
|
|
{
|
|
const std::string &hrtfname = device->mHrtfList[static_cast<uint>(hrtf_id)];
|
|
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
|
|
{
|
|
device->mHrtf = std::move(hrtf);
|
|
device->mHrtfName = hrtfname;
|
|
}
|
|
}
|
|
|
|
if(!device->mHrtf)
|
|
{
|
|
for(const auto &hrtfname : device->mHrtfList)
|
|
{
|
|
if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
|
|
{
|
|
device->mHrtf = std::move(hrtf);
|
|
device->mHrtfName = hrtfname;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(device->mHrtf)
|
|
{
|
|
old_hrtf = nullptr;
|
|
|
|
HrtfStore *hrtf{device->mHrtf.get()};
|
|
device->mIrSize = hrtf->irSize;
|
|
if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size"))
|
|
{
|
|
if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
|
|
device->mIrSize = maxu(*hrtfsizeopt, MinIrLength);
|
|
}
|
|
|
|
InitHrtfPanning(device);
|
|
device->PostProcess = &ALCdevice::ProcessHrtf;
|
|
return;
|
|
}
|
|
device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
|
|
|
|
no_hrtf:
|
|
old_hrtf = nullptr;
|
|
|
|
device->mRenderMode = RenderMode::Pairwise;
|
|
|
|
if(device->Type != DeviceType::Loopback)
|
|
{
|
|
if(auto cflevopt = ConfigValueInt(device->DeviceName.c_str(), nullptr, "cf_level"))
|
|
{
|
|
if(*cflevopt > 0 && *cflevopt <= 6)
|
|
{
|
|
device->Bs2b = std::make_unique<bs2b>();
|
|
bs2b_set_params(device->Bs2b.get(), *cflevopt,
|
|
static_cast<int>(device->Frequency));
|
|
TRACE("BS2B enabled\n");
|
|
InitPanning(device);
|
|
device->PostProcess = &ALCdevice::ProcessBs2b;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(auto encopt = ConfigValueStr(device->DeviceName.c_str(), nullptr, "stereo-encoding"))
|
|
{
|
|
const char *mode{encopt->c_str()};
|
|
if(al::strcasecmp(mode, "uhj") == 0)
|
|
device->mRenderMode = RenderMode::Normal;
|
|
else if(al::strcasecmp(mode, "panpot") != 0)
|
|
ERR("Unexpected stereo-encoding: %s\n", mode);
|
|
}
|
|
if(device->mRenderMode == RenderMode::Normal)
|
|
{
|
|
device->mUhjEncoder = std::make_unique<UhjEncoder>();
|
|
TRACE("UHJ enabled\n");
|
|
InitUhjPanning(device);
|
|
device->PostProcess = &ALCdevice::ProcessUhj;
|
|
return;
|
|
}
|
|
|
|
TRACE("Stereo rendering\n");
|
|
InitPanning(device);
|
|
device->PostProcess = &ALCdevice::ProcessAmbiDec;
|
|
}
|
|
|
|
|
|
void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
|
|
{
|
|
DeviceBase *device{context->mDevice};
|
|
const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
|
|
|
|
auto wetbuffer_iter = context->mWetBuffers.end();
|
|
if(slot->mWetBuffer)
|
|
{
|
|
/* If the effect slot already has a wet buffer attached, allocate a new
|
|
* one in its place.
|
|
*/
|
|
wetbuffer_iter = context->mWetBuffers.begin();
|
|
for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
|
|
{
|
|
if(wetbuffer_iter->get() == slot->mWetBuffer)
|
|
{
|
|
slot->mWetBuffer = nullptr;
|
|
slot->Wet.Buffer = {};
|
|
|
|
*wetbuffer_iter = WetBufferPtr{new(FamCount(count)) WetBuffer{count}};
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(wetbuffer_iter == context->mWetBuffers.end())
|
|
{
|
|
/* Otherwise, search for an unused wet buffer. */
|
|
wetbuffer_iter = context->mWetBuffers.begin();
|
|
for(;wetbuffer_iter != context->mWetBuffers.end();++wetbuffer_iter)
|
|
{
|
|
if(!(*wetbuffer_iter)->mInUse)
|
|
break;
|
|
}
|
|
if(wetbuffer_iter == context->mWetBuffers.end())
|
|
{
|
|
/* Otherwise, allocate a new one to use. */
|
|
context->mWetBuffers.emplace_back(WetBufferPtr{new(FamCount(count)) WetBuffer{count}});
|
|
wetbuffer_iter = context->mWetBuffers.end()-1;
|
|
}
|
|
}
|
|
WetBuffer *wetbuffer{slot->mWetBuffer = wetbuffer_iter->get()};
|
|
wetbuffer->mInUse = true;
|
|
|
|
auto acnmap_begin = AmbiIndex::FromACN().begin();
|
|
auto iter = std::transform(acnmap_begin, acnmap_begin + count, slot->Wet.AmbiMap.begin(),
|
|
[](const uint8_t &acn) noexcept -> BFChannelConfig
|
|
{ return BFChannelConfig{1.0f, acn}; });
|
|
std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
|
|
slot->Wet.Buffer = wetbuffer->mBuffer;
|
|
}
|