2018-01-11 10:55:35 -08:00

572 lines
18 KiB
C

/**
* OpenAL cross platform audio library
* Copyright (C) 2013 by Mike Gorchak
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alFilter.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
static_assert(AL_CHORUS_WAVEFORM_SINUSOID == AL_FLANGER_WAVEFORM_SINUSOID, "Chorus/Flanger waveform value mismatch");
static_assert(AL_CHORUS_WAVEFORM_TRIANGLE == AL_FLANGER_WAVEFORM_TRIANGLE, "Chorus/Flanger waveform value mismatch");
enum WaveForm {
WF_Sinusoid,
WF_Triangle
};
typedef struct ALchorusState {
DERIVE_FROM_TYPE(ALeffectState);
ALfloat *SampleBuffer;
ALsizei BufferLength;
ALsizei offset;
ALsizei lfo_offset;
ALsizei lfo_range;
ALfloat lfo_scale;
ALint lfo_disp;
/* Gains for left and right sides */
struct {
ALfloat Current[MAX_OUTPUT_CHANNELS];
ALfloat Target[MAX_OUTPUT_CHANNELS];
} Gains[2];
/* effect parameters */
enum WaveForm waveform;
ALint delay;
ALfloat depth;
ALfloat feedback;
} ALchorusState;
static ALvoid ALchorusState_Destruct(ALchorusState *state);
static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device);
static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props);
static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALchorusState)
DEFINE_ALEFFECTSTATE_VTABLE(ALchorusState);
static void ALchorusState_Construct(ALchorusState *state)
{
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALchorusState, ALeffectState, state);
state->BufferLength = 0;
state->SampleBuffer = NULL;
state->offset = 0;
state->lfo_offset = 0;
state->lfo_range = 1;
state->waveform = WF_Triangle;
}
static ALvoid ALchorusState_Destruct(ALchorusState *state)
{
al_free(state->SampleBuffer);
state->SampleBuffer = NULL;
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALchorusState_deviceUpdate(ALchorusState *state, ALCdevice *Device)
{
const ALfloat max_delay = maxf(AL_CHORUS_MAX_DELAY, AL_FLANGER_MAX_DELAY);
ALsizei maxlen;
maxlen = NextPowerOf2(fastf2i(max_delay*2.0f*Device->Frequency) + 1);
if(maxlen <= 0) return AL_FALSE;
if(maxlen != state->BufferLength)
{
void *temp = al_calloc(16, maxlen * sizeof(ALfloat));
if(!temp) return AL_FALSE;
al_free(state->SampleBuffer);
state->SampleBuffer = temp;
state->BufferLength = maxlen;
}
memset(state->SampleBuffer, 0, state->BufferLength*sizeof(ALfloat));
memset(state->Gains, 0, sizeof(state->Gains));
return AL_TRUE;
}
static ALvoid ALchorusState_update(ALchorusState *state, const ALCcontext *Context, const ALeffectslot *Slot, const ALeffectProps *props)
{
const ALsizei mindelay = MAX_RESAMPLE_PADDING << FRACTIONBITS;
const ALCdevice *device = Context->Device;
ALfloat frequency = (ALfloat)device->Frequency;
ALfloat coeffs[MAX_AMBI_COEFFS];
ALfloat rate;
ALint phase;
switch(props->Chorus.Waveform)
{
case AL_CHORUS_WAVEFORM_TRIANGLE:
state->waveform = WF_Triangle;
break;
case AL_CHORUS_WAVEFORM_SINUSOID:
state->waveform = WF_Sinusoid;
break;
}
/* The LFO depth is scaled to be relative to the sample delay. Clamp the
* delay and depth to allow enough padding for resampling.
*/
state->delay = maxi(fastf2i(props->Chorus.Delay*frequency*FRACTIONONE + 0.5f),
mindelay);
state->depth = minf(props->Chorus.Depth * state->delay,
(ALfloat)(state->delay - mindelay));
state->feedback = props->Chorus.Feedback;
/* Gains for left and right sides */
CalcAngleCoeffs(-F_PI_2, 0.0f, 0.0f, coeffs);
ComputeDryPanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[0].Target);
CalcAngleCoeffs( F_PI_2, 0.0f, 0.0f, coeffs);
ComputeDryPanGains(&device->Dry, coeffs, Slot->Params.Gain, state->Gains[1].Target);
phase = props->Chorus.Phase;
rate = props->Chorus.Rate;
if(!(rate > 0.0f))
{
state->lfo_offset = 0;
state->lfo_range = 1;
state->lfo_scale = 0.0f;
state->lfo_disp = 0;
}
else
{
/* Calculate LFO coefficient (number of samples per cycle). Limit the
* max range to avoid overflow when calculating the displacement.
*/
ALsizei lfo_range = mini(fastf2i(frequency/rate + 0.5f), INT_MAX/360 - 180);
state->lfo_offset = fastf2i((ALfloat)state->lfo_offset/state->lfo_range*
lfo_range + 0.5f) % lfo_range;
state->lfo_range = lfo_range;
switch(state->waveform)
{
case WF_Triangle:
state->lfo_scale = 4.0f / state->lfo_range;
break;
case WF_Sinusoid:
state->lfo_scale = F_TAU / state->lfo_range;
break;
}
/* Calculate lfo phase displacement */
if(phase < 0) phase = 360 + phase;
state->lfo_disp = (state->lfo_range*phase + 180) / 360;
}
}
static void GetTriangleDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range,
const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay,
const ALsizei todo)
{
ALsizei i;
for(i = 0;i < todo;i++)
{
delays[i] = fastf2i((1.0f - fabsf(2.0f - lfo_scale*offset)) * depth) + delay;
offset = (offset+1)%lfo_range;
}
}
static void GetSinusoidDelays(ALint *restrict delays, ALsizei offset, const ALsizei lfo_range,
const ALfloat lfo_scale, const ALfloat depth, const ALsizei delay,
const ALsizei todo)
{
ALsizei i;
for(i = 0;i < todo;i++)
{
delays[i] = fastf2i(sinf(lfo_scale*offset) * depth) + delay;
offset = (offset+1)%lfo_range;
}
}
static ALvoid ALchorusState_process(ALchorusState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
const ALsizei bufmask = state->BufferLength-1;
const ALfloat feedback = state->feedback;
const ALsizei avgdelay = (state->delay + (FRACTIONONE>>1)) >> FRACTIONBITS;
ALfloat *restrict delaybuf = state->SampleBuffer;
ALsizei offset = state->offset;
ALsizei i, c;
ALsizei base;
for(base = 0;base < SamplesToDo;)
{
const ALsizei todo = mini(256, SamplesToDo-base);
ALint moddelays[2][256];
ALfloat temps[2][256];
if(state->waveform == WF_Sinusoid)
{
GetSinusoidDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
state->depth, state->delay, todo);
GetSinusoidDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
state->lfo_range, state->lfo_scale, state->depth, state->delay,
todo);
}
else /*if(state->waveform == WF_Triangle)*/
{
GetTriangleDelays(moddelays[0], state->lfo_offset, state->lfo_range, state->lfo_scale,
state->depth, state->delay, todo);
GetTriangleDelays(moddelays[1], (state->lfo_offset+state->lfo_disp)%state->lfo_range,
state->lfo_range, state->lfo_scale, state->depth, state->delay,
todo);
}
state->lfo_offset = (state->lfo_offset+todo) % state->lfo_range;
for(i = 0;i < todo;i++)
{
ALint delay;
ALfloat mu;
// Feed the buffer's input first (necessary for delays < 1).
delaybuf[offset&bufmask] = SamplesIn[0][base+i];
// Tap for the left output.
delay = offset - (moddelays[0][i]>>FRACTIONBITS);
mu = (moddelays[0][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
mu);
// Tap for the right output.
delay = offset - (moddelays[1][i]>>FRACTIONBITS);
mu = (moddelays[1][i]&FRACTIONMASK) * (1.0f/FRACTIONONE);
temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask],
mu);
// Accumulate feedback from the average delay of the taps.
delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
offset++;
}
for(c = 0;c < 2;c++)
MixSamples(temps[c], NumChannels, SamplesOut, state->Gains[c].Current,
state->Gains[c].Target, SamplesToDo-base, base, todo);
base += todo;
}
state->offset = offset;
}
typedef struct ALchorusStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALchorusStateFactory;
static ALeffectState *ALchorusStateFactory_create(ALchorusStateFactory *UNUSED(factory))
{
ALchorusState *state;
NEW_OBJ0(state, ALchorusState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALchorusStateFactory);
ALeffectStateFactory *ALchorusStateFactory_getFactory(void)
{
static ALchorusStateFactory ChorusFactory = { { GET_VTABLE2(ALchorusStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &ChorusFactory);
}
void ALchorus_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_WAVEFORM:
if(!(val >= AL_CHORUS_MIN_WAVEFORM && val <= AL_CHORUS_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Waveform = val;
break;
case AL_CHORUS_PHASE:
if(!(val >= AL_CHORUS_MIN_PHASE && val <= AL_CHORUS_MAX_PHASE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Phase = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALchorus_setParami(effect, context, param, vals[0]);
}
void ALchorus_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_RATE:
if(!(val >= AL_CHORUS_MIN_RATE && val <= AL_CHORUS_MAX_RATE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Rate = val;
break;
case AL_CHORUS_DEPTH:
if(!(val >= AL_CHORUS_MIN_DEPTH && val <= AL_CHORUS_MAX_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Depth = val;
break;
case AL_CHORUS_FEEDBACK:
if(!(val >= AL_CHORUS_MIN_FEEDBACK && val <= AL_CHORUS_MAX_FEEDBACK))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Feedback = val;
break;
case AL_CHORUS_DELAY:
if(!(val >= AL_CHORUS_MIN_DELAY && val <= AL_CHORUS_MAX_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Delay = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALchorus_setParamf(effect, context, param, vals[0]);
}
void ALchorus_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_WAVEFORM:
*val = props->Chorus.Waveform;
break;
case AL_CHORUS_PHASE:
*val = props->Chorus.Phase;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALchorus_getParami(effect, context, param, vals);
}
void ALchorus_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_CHORUS_RATE:
*val = props->Chorus.Rate;
break;
case AL_CHORUS_DEPTH:
*val = props->Chorus.Depth;
break;
case AL_CHORUS_FEEDBACK:
*val = props->Chorus.Feedback;
break;
case AL_CHORUS_DELAY:
*val = props->Chorus.Delay;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALchorus_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALchorus_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALchorus);
/* Flanger is basically a chorus with a really short delay. They can both use
* the same processing functions, so piggyback flanger on the chorus functions.
*/
typedef struct ALflangerStateFactory {
DERIVE_FROM_TYPE(ALeffectStateFactory);
} ALflangerStateFactory;
ALeffectState *ALflangerStateFactory_create(ALflangerStateFactory *UNUSED(factory))
{
ALchorusState *state;
NEW_OBJ0(state, ALchorusState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALflangerStateFactory);
ALeffectStateFactory *ALflangerStateFactory_getFactory(void)
{
static ALflangerStateFactory FlangerFactory = { { GET_VTABLE2(ALflangerStateFactory, ALeffectStateFactory) } };
return STATIC_CAST(ALeffectStateFactory, &FlangerFactory);
}
void ALflanger_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_WAVEFORM:
if(!(val >= AL_FLANGER_MIN_WAVEFORM && val <= AL_FLANGER_MAX_WAVEFORM))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Waveform = val;
break;
case AL_FLANGER_PHASE:
if(!(val >= AL_FLANGER_MIN_PHASE && val <= AL_FLANGER_MAX_PHASE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Phase = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALflanger_setParami(effect, context, param, vals[0]);
}
void ALflanger_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_RATE:
if(!(val >= AL_FLANGER_MIN_RATE && val <= AL_FLANGER_MAX_RATE))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Rate = val;
break;
case AL_FLANGER_DEPTH:
if(!(val >= AL_FLANGER_MIN_DEPTH && val <= AL_FLANGER_MAX_DEPTH))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Depth = val;
break;
case AL_FLANGER_FEEDBACK:
if(!(val >= AL_FLANGER_MIN_FEEDBACK && val <= AL_FLANGER_MAX_FEEDBACK))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Feedback = val;
break;
case AL_FLANGER_DELAY:
if(!(val >= AL_FLANGER_MIN_DELAY && val <= AL_FLANGER_MAX_DELAY))
SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
props->Chorus.Delay = val;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
{
ALflanger_setParamf(effect, context, param, vals[0]);
}
void ALflanger_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_WAVEFORM:
*val = props->Chorus.Waveform;
break;
case AL_FLANGER_PHASE:
*val = props->Chorus.Phase;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALflanger_getParami(effect, context, param, vals);
}
void ALflanger_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_FLANGER_RATE:
*val = props->Chorus.Rate;
break;
case AL_FLANGER_DEPTH:
*val = props->Chorus.Depth;
break;
case AL_FLANGER_FEEDBACK:
*val = props->Chorus.Feedback;
break;
case AL_FLANGER_DELAY:
*val = props->Chorus.Delay;
break;
default:
SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
}
}
void ALflanger_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
{
ALflanger_getParamf(effect, context, param, vals);
}
DEFINE_ALEFFECT_VTABLE(ALflanger);